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Incomplete 

adjective 
not having all the necessary or appropriate parts
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never done
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“This, milord, is my family's axe. 
We have owned it for almost nine 
hundred years, see. Of course, 
sometimes it needed a new blade. 
And sometimes it has required a 
new handle, new designs on the 
metalwork, a little refreshing of the 
ornamentation . . . but is this not 
the nine hundred-year-old axe of 
my family? And because it has 
changed gently over time, it is still a 
pretty good axe, y'know. Pretty 
good.”

never done
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microservices should be:

cheap to replace

and should allow us to go as  
“fast as possible”?

quick to scale

able to withstand failure
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“the first post-devops architectural style”
Neal Ford
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replaceable component architectures
Dan North
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the future is scary
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"ever accelerating progress of technology and changes in the mode 
of human life, which gives the appearance of approaching some 
essential singularity in the history of the race beyond which human 
affairs, as we know them, could not continue” 

John von Neumann, as recorded by Ulam, 1958
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Singularity
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Singularity
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Container
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Singularity
JavaScript
Log aggregation

Container
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even closer to home



HOW WE DESIGN SOFTWARE IS CHANGING
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Hardest things to do:
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Hardest things to do: End-to-end testing

Independent deployment
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Hardest things to do: End-to-end testing

Independent deployment

Service versioning / evolution



TESTING MICROSERVICES IS HARD
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INTEGRATING MICROSERVICES IS HARD
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Integration Test
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Integration Test Prod…
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<thinks>
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agile

XP
TDD

BDD

YAGNI

DRY

SOLID

Continuous Delivery

Refactoring

GoF

GRASP

emergent design

World of Warcraft

KISS
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Gemini Project, Rogallo wing

Source: wikipedia.org
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<thinks>
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Gemini Project, Rogallo wing

Source: wikipedia.org

it’s turtles all the way down

http://wikipedia.org
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http://martinfowler.com/bliki/Yagni.html

http://martinfowler.com/bliki/Yagni.html
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Build out 
services as 
you need 

them
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agile

XP
TDD

BDD

YAGNI

DRY

SOLID

Continuous Delivery

Refactoring

GoFGRASPemergent design

World of Warcraft

KISS
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Fulfilment

Retail
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Fulfilment Retail
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Fulfilment Retail
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Fulfilment Retail
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Fulfilment Retail

High cohesion 

Low coupling
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(incidentally, if you were playing 
the Conway’s law lottery, that’s 

when you number came up)
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agile
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TDD

BDD

YAGNI

DRY
SOLID

Continuous Delivery

Refactoring

GoF

GRASP

emergent design

World of Warcraft

KISS
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“Every piece of knowledge must have 
a single, unambiguous, authoritative 

representation within a system”

Dave Thomas, interviewed by Bill Venners (2003-10-10). "Orthogonality and the DRY Principle". Retrieved 2006-12-01.
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shared binary dependencies

∆ dep ⇒ ∆S1 + ∆S2 + … + ∆Sn
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git clone https://github.com/boicy/service-template

(note this doesn’t exist)

https://github.com/boicy/service-template
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DRY within services 

duplication between 
services 
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agile
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TDDBDD

YAGNI
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SOLID

Continuous Delivery

Refactoring

GoF

GRASP

emergent design

World of Warcraft

KISS
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Small

Medium

Large
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“The London school 
of Test Driven 
Development”

Mike Feathers
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should we write unit tests?
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should bother with test 
driving our code if we are 
going to throw it away?
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Nat Pryce 
Steve Freeman 
Dan North 
Sydney ‘Hoppalong’ Redelinghuys 
Jim Webber 
Ian Robinson 
Ivan Moore 
Liz Keogh 
Simon Stewart 
Jez Humble 
Dave Farley 
Jay Fields 
Dan Worthington-Bodart 
Joe Walnes
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http://moleseyhill.com/blog/2009/08/27/dreyfus-model/



should we write unit tests?

51

personally I think it’s more 
important than *ever*
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agile

XP
TDD

BDD

YAGNI

DRY

Continuous Delivery

Refactoring

GoF

GRASP

emergent design

World of Warcraft

KISS

SRP
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a class should be no bigger than my head



5454

a:Class
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a:Class

a:Class

a:Class

a:Class
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SRP 

a service should 
be no bigger than 

my head
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WWJD?
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WWJD?
(what would Joe do?)
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cron, python, boto, pydot, graphviz
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cron, python, boto, pydot, graphviz
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cron, python, boto, pydot, graphviz

Do the simplest 
thing possible
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integration and deployment
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SEMANTIC MONITORING
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service bservice a
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service bservice a
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Large
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service bservice a
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service bservice a

Small

Medium

Large
Consumer Driven Contracts
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Customer 
ServiceWeb Shop



68

Customer 
ServiceWeb Shop

Expectations



68

Customer 
ServiceWeb Shop

Expectations



68

Customer 
ServiceWeb Shop

Expectations

Prod



68
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ServiceWeb Shop

Expectations

Prod



69



69

https://github.com/realestate-com-au/pact

https://github.com/realestate-com-au/pact
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Prod

Prod

Prod

Prod

QA

Good Monitoring

Fast Remediation

TESTING IN PRODUCTION
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integration environment

the death of the
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production != live
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CHANGING SERVICES INDEPENDENTLY
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CHANGING SERVICES INDEPENDENTLY

What is the blast radius of the change?

business capability?
Limited to your team?
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CHANGING SERVICES INDEPENDENTLY

What is the blast radius of the change?

business capability?
organisation?

Limited to your team?



75Thomas J. Allen, 1977
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Low change rate

inter-company integration

High stability

Semantic Versioning

Contract Testing

Tolerant Reader

“Conversational change”
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higher change rate

inter-team integration

lower stability

Semantic Versioning

Contract Testing

Tolerant Reader

“Conversational change”
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highest change rate

intra-team

lowest stability

Semantic Versioning

Contract Testing

Tolerant Reader

“Conversational change”
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the future is scary



we are learning how to: 

Craft my families axe 

Deploy small services independently 

Test microservices in isolation 
Test microservices in production
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the future is bright
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we have old techniques that apply: 

SRP 
GRASP 
YAGNI 
KISS 
TDD 
DRY



and new techniques to apply: 

Consumer Driven Contracts 
Semantic Monitoring 
Semantic Versioning 
Testing in Production 
Failure Isolation
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do the simplest thing possible
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jalewis@thoughtworks.com

@boicy
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jalewis@thoughtworks.com

@boicy

Thanks!


