
1

never done
building systems that are

jalewis@thoughtworks.com

@boicy

2

never done

3

never done

Incomplete

adjective
not having all the necessary or appropriate parts

3

never done

Incomplete

adjective
not having all the necessary or appropriate parts

4

never done

4

“This, milord, is my family's axe.
We have owned it for almost nine
hundred years, see. Of course,
sometimes it needed a new blade.
And sometimes it has required a
new handle, new designs on the
metalwork, a little refreshing of the
ornamentation . . . but is this not
the nine hundred-year-old axe of
my family? And because it has
changed gently over time, it is still a
pretty good axe, y'know. Pretty
good.”

never done

5

microservices should be:

cheap to replace

and should allow us to go as
“fast as possible”?

quick to scale

able to withstand failure

6

“the first post-devops architectural style”
Neal Ford

7

replaceable component architectures
Dan North

8

the future is scary

9

"ever accelerating progress of technology and changes in the mode
of human life, which gives the appearance of approaching some
essential singularity in the history of the race beyond which human
affairs, as we know them, could not continue”

John von Neumann, as recorded by Ulam, 1958

10

11

Singularity

11

Singularity
JavaScript

11

Singularity
JavaScript

Container

11

Singularity
JavaScript
Log aggregation

Container

12

even closer to home

HOW WE DESIGN SOFTWARE IS CHANGING

13

14

15

Hardest things to do:

15

Hardest things to do: End-to-end testing

15

Hardest things to do: End-to-end testing

Independent deployment

15

Hardest things to do: End-to-end testing

Independent deployment

Service versioning / evolution

TESTING MICROSERVICES IS HARD

16

Service A

Service

Large

Medium

Small

TESTING MICROSERVICES IS HARD

16

Service A

Service

Large

Medium

Small

Service
Stub

TESTING MICROSERVICES IS HARD

16

Service A

Large

Medium

Small

INTEGRATING MICROSERVICES IS HARD

17

INTEGRATING MICROSERVICES IS HARD

17

Integration Test

INTEGRATING MICROSERVICES IS HARD

17

Integration Test Prod…

INTEGRATING MICROSERVICES IS HARD

17

Integration Test Prod…

INTEGRATING MICROSERVICES IS HARD

17

Integration Test Prod…

INTEGRATING MICROSERVICES IS HARD

17

Integration Test Prod…

18

<thinks>

19

agile

XP
TDD

BDD

YAGNI

DRY

SOLID

Continuous Delivery

Refactoring

GoF

GRASP

emergent design

World of Warcraft

KISS

20

20

Gemini Project, Rogallo wing

Source: wikipedia.org

21

<thinks>

22

Gemini Project, Rogallo wing

Source: wikipedia.org

it’s turtles all the way down

http://wikipedia.org

23

agile

XP
TDD

BDD

YAGNI

DRY

SOLID

Continuous Delivery

Refactoring

GoF

GRASP

emergent design

World of Warcraft

KISS

24

agile

XP
TDD

BDDYAGNI
DRY

SOLID

Continuous Delivery

Refactoring

GoF

GRASP

emergent design

World of Warcraft

KISS

25

http://martinfowler.com/bliki/Yagni.html

http://martinfowler.com/bliki/Yagni.html

2626

2727

2828

2929

Build out
services as
you need

them

30

agile

XP
TDD

BDD

YAGNI

DRY

SOLID

Continuous Delivery

Refactoring

GoFGRASPemergent design

World of Warcraft

KISS

31

32

Fulfilment

Retail

33

Fulfilment Retail

34

Fulfilment Retail

35

Fulfilment Retail

36

Fulfilment Retail

High cohesion

Low coupling

37

(incidentally, if you were playing
the Conway’s law lottery, that’s

when you number came up)

38

agile

XP
TDD

BDD

YAGNI

DRY
SOLID

Continuous Delivery

Refactoring

GoF

GRASP

emergent design

World of Warcraft

KISS

39

“Every piece of knowledge must have
a single, unambiguous, authoritative

representation within a system”

Dave Thomas, interviewed by Bill Venners (2003-10-10). "Orthogonality and the DRY Principle". Retrieved 2006-12-01.

4040

shared binary dependencies

∆ dep ⇒ ∆S1 + ∆S2 + … + ∆Sn

41

git clone https://github.com/boicy/service-template

(note this doesn’t exist)

https://github.com/boicy/service-template

42

43

DRY within services

duplication between
services

44

agile

XP

TDDBDD

YAGNI

DRY

SOLID

Continuous Delivery

Refactoring

GoF

GRASP

emergent design

World of Warcraft

KISS

45

45

Small

Medium

Large

46

“The London school
of Test Driven
Development”

Mike Feathers

47

should we write unit tests?

48

should bother with test
driving our code if we are
going to throw it away?

49

Nat Pryce
Steve Freeman
Dan North
Sydney ‘Hoppalong’ Redelinghuys
Jim Webber
Ian Robinson
Ivan Moore
Liz Keogh
Simon Stewart
Jez Humble
Dave Farley
Jay Fields
Dan Worthington-Bodart
Joe Walnes

50

http://moleseyhill.com/blog/2009/08/27/dreyfus-model/

should we write unit tests?

51

personally I think it’s more
important than *ever*

52

agile

XP
TDD

BDD

YAGNI

DRY

Continuous Delivery

Refactoring

GoF

GRASP

emergent design

World of Warcraft

KISS

SRP

53

a class should be no bigger than my head

5454

a:Class

5555

a:Class

a:Class

a:Class

a:Class

5656

5757

58

SRP

a service should
be no bigger than

my head

59

agile

XP
TDD

BDD

YAGNI

DRY

SOLID

Continuous Delivery

Refactoring

GoF

GRASP

emergent design

World of Warcraft

KISS

60

61

WWJD?

61

WWJD?
(what would Joe do?)

62

63

cron, python, boto, pydot, graphviz

63

cron, python, boto, pydot, graphviz

64

cron, python, boto, pydot, graphviz

Do the simplest
thing possible

65

integration and deployment

66

66

66

SEMANTIC MONITORING

67

service bservice a

67

service bservice a

Small

Medium

Large

67

service bservice a

Small

Medium

Large

67

service bservice a

Small

Medium

Large
Consumer Driven Contracts

68

Customer
ServiceWeb Shop

68

Customer
ServiceWeb Shop

Expectations

68

Customer
ServiceWeb Shop

Expectations

68

Customer
ServiceWeb Shop

Expectations

Prod

68

Customer
ServiceWeb Shop

Expectations

Prod

69

69

https://github.com/realestate-com-au/pact

https://github.com/realestate-com-au/pact

70

Prod

Prod

Prod

Prod

QA

Good Monitoring

Fast Remediation

TESTING IN PRODUCTION

71

integration environment

the death of the

72

production != live

73

CHANGING SERVICES INDEPENDENTLY

74

CHANGING SERVICES INDEPENDENTLY

What is the blast radius of the change?

74

CHANGING SERVICES INDEPENDENTLY

What is the blast radius of the change?

Limited to your team?

74

CHANGING SERVICES INDEPENDENTLY

What is the blast radius of the change?

business capability?
Limited to your team?

74

CHANGING SERVICES INDEPENDENTLY

What is the blast radius of the change?

business capability?
organisation?

Limited to your team?

75Thomas J. Allen, 1977

76

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.10

0.15

0.20

0.25

0.30

m

Probability of
weekly interaction

x

x x

x x
xxxxxxxx

x

x x
x

x x
x x

The effect of distance on communication

77

Low change rate

inter-company integration

High stability

Semantic Versioning

Contract Testing

Tolerant Reader

“Conversational change”

78

higher change rate

inter-team integration

lower stability

Semantic Versioning

Contract Testing

Tolerant Reader

“Conversational change”

79

highest change rate

intra-team

lowest stability

Semantic Versioning

Contract Testing

Tolerant Reader

“Conversational change”

80

the future is scary

we are learning how to:

Craft my families axe

Deploy small services independently

Test microservices in isolation
Test microservices in production

82

the future is bright

83

we have old techniques that apply:

SRP
GRASP
YAGNI
KISS
TDD
DRY

and new techniques to apply:

Consumer Driven Contracts
Semantic Monitoring
Semantic Versioning
Testing in Production
Failure Isolation

85

85

do the simplest thing possible

86

jalewis@thoughtworks.com

@boicy

86

jalewis@thoughtworks.com

@boicy

Thanks!

