
Maintaining your elasticsearch indexes
Jettro Coenradie

Create your index

curl -XPUT http://localhost:9200/conferences

Update your index

Backing up your index

Other tools

elasticdump,\,
,,..input=http://localhost:9200/conferences,\,
,,..output=/data/conferences.json,\,
,,..type=data

Marvel /Sense
Kibana
Logstash

Maintain elastic
Elastic gui
Geo elastic

https://www.elastic.co https://github.com/jettro

https://www.npmjs.com/package/elasticdump
https://github.com/jprante/elasticsearch-jdbc

https://github.com/spring-projects/spring-data-elasticsearch

Working with legacy code
will make you a
better coder.

Working with legacy code
will make you a
better human.

!

"

! ! !

?

?
?

!

?

!

?

!

!

"

1

1 2

1 2 3

?

! !

!!

?!

?!

?!

#

?!

#

?!

?!

$

$

$ $ $

$

$ $ $

!

Those who cannot
remember the past
are condemned to
repeat it.”

“

George Santayana

Those who cannot
remember past UX errors
are condemned to
repeat them.
(Not George Santayana)

Figure out what
you’ve got

Understand the
codebase

Maintain order

$

+

$

Project Stuff 2003 - 2015

tiny_logo_2004.jpg

_Archive Trash

Illustrations Photography

GOAL
Define a

GOALDefine a

!

G
O

A
L

D
efi

ne
a !
!

!
!
!

G
O

A
L

D
efi

ne
a

!!!

!!!

!

!!!

!

?

!!!

!

?
?!

Create goals
together

Define the problem

Share and discuss
legacy issues

Write those
goals down

Write those
goals down!

Make all of your
major decisions at the

whiteboard level

Having a goal…

Having a goal…
1. Informs team

Having a goal…
1. Informs team
2. Lays groundwork

Having a goal…
1. Informs team
2. Lays groundwork
3. Sets expectations

Going Forward

Keep track of the
mess

tiny_logo_2004.jpg

_Archive Trash

$

How do we end up
with bad legacy?

“We need it
yesterday.”

We do our best!

What can we do?

Improve existing code

+

Minimize new cruft

Prioritize
maintenance

Always code as if the
person who ends up
maintaining your code is

a violent psychopath
who knows where
you live.”

“

John F. Woods

Write code
for me!

Your work is part of
a foundation.

Assess1

Assess

Define your goal

1

2

Assess

Define your goal

Prioritize maintenance

1

2

3

!

Thanks!

Document Database Schema Design

3

Agenda

Schema
Documents
Document Schema Design
Patterns

Schema

5

First thing that comes to mind…

6

But there are other types of schema

Documents

8

What is a Document?

{
 name: ‘Dutch Constitution’,
 headline: ‘The Present State of Holand’,
 efforced_by: ‘King and Parliament’

 date: ‘11 October 1848’,
 labels: [legal, society, rules],
 freedoms: [

 { name: ‘Speach’,
 text: 'Any censorship is absolutely forbidden'},
 { name: ‘Association’,
 text: 'This right can be limited by formal law,'},

 }
}

Document Schema Design

10

The focus is "What I want to Build"
•  We focus on how to use Data

–  Not on how to store it
•  Use flexibility of schema to adjust to new

features and iterations deliver more
features

–  Do not be restricted by the need to
add functionality

•  Scale to accommodate your application
data needs

–  Don't be afraid of being successful
•  Out of the Box Full features

–  Text Search
–  Geospatial, Rich queries
–  Map Reduce and Aggregation

Framework

11

Mind Set

Application Application

RELATIONAL WAY MONGODB WAY

It is so good it can take check-in's from Mars!

Patterns

14

Discrete Documents
{

 policyNum: 123,
 type: auto,
 customerId: abc,
 payment: 899,

 deductible: 500,
 make: Taurus,
 model: Ford,
 VIN: 123ABC456,

}

{
 policyNum: 456,
 type: life,
 customerId: efg,

 payment: 240,

 policyValue: 125000,
 start: jan, 1995
 end: jan, 2015

 }

{
 policyNum: 789,
 type: home,
 customerId: hij,
 payment: 650,

 deductible: 1000,
 floodCoverage: No,
 street: “10 Maple Lane”,
 city: “Springfield”,
 state: “Maryland”
}

15

Time Series
{
 _id: "20130310/resource/home.htm",
 metadata: {
 date:
ISODate("2013-03-10T00:00:00Z"),
 site: "main-site",
 page: "home.htm",
 …
 },
 month : 3,
 total : 9120637,
 hourly: {
 0 : 361012,
 1 : 399034,
 …,
 23 : 387010 },

hour-minute: {
 0 : { 0 : 5678,
 1 : 6745,
 2 : 9212,
 …
 59 : 6823
 },
 1 : { 0 : 8765,
 1 : 8976,
 2 : 8345,
 …
 59 : 9812
 },
 …
 23 : { 0 : 7453,
 1 : 7432,
 2 : 7901,
 …
 59 : 8764
 }
 }
}

16

Referencing vs Embedding
{

_id: 111,
name: "Friso",
beers: [
 { name: "SuperBock", comment: "AWESOME" },
 { name: "Bavaria", comment: "Boooohhhohoohoh"}
]

}

{
_id: 21,
user_id: 111,
name: "SuperBock",
comment: "AWESOME"

}
{

_id: 22,
user_id: 111,
name: "Bavaria",
comment: "Boooohhhohoohoh"

}

{
_id: 111,
name: "Friso"

}

Embedding

Referencing

17

Referencing vs Embedding
Referencing Embedding

Data grows in different ways Want to retrieve all info in one go
(avoid round trips to database)

Is access by different access patterns
and workflows

Assure atomic operations

Have a different lifecycle When data changes in the same rate
and in the same pace

Anti-Patterns

19

Unbounded Arrays/Documents
db.profile.insert(doc0);

{_id: 1, selfies: [x0001]}

db.profile.insert(doc2);

{_id: 2, selfies: [x0101]}

db.profile.update({_id:1},
{$push:{selfies: x0202});

20

Unbounded Arrays/Documents
db.profile.insert(doc0);

{_id: 1, selfies: [x0001,
x0202]}

db.profile.insert(doc2);

{_id: 2, selfies: [x0101]}

db.profile.update({_id:1},
{$push:{selfies: x0202});

21

Unbounded Arrays/Documents
db.profile.insert(doc0);

{_id: 1, selfies: [x0001,
x0202]}

db.profile.insert(doc2);

{_id: 2, selfies: [x0101]}

db.profile.update({_id: i},
{$push:{selfies: xXXX});

for i in all_profiles:

{_id: 3, selfies: [x0103…]}

{_id: 4, selfies: [x0104…]}

22

Overloaded Documents

23

Overloaded Documents
{
 name: 'Norberto',
 role: 'Technical Evangelist',
 talks: [
 {
 title: 'Document Database Schema Design',
 description:'This talk is a short introduction...',
 schedule: '12:10 - 12:25'
 },
 {
 title: 'Scalable Cluster in 15 minutes!',
 description: 'This talk is a quick introduction...',
 schedule: '14:50 - 15:05'}
]
 twitter: 'nleite',
 email: 'norberto@mongodb.com',
 bio: 'Norberto Leite is Technical Evangelist...'

 address: 'Calle Artistas, Madrid',
 supporter: { clube: 'FC Porto', description: 'Best Club in the WORLD' }
 conferences: ['GOTO', 'MongoDB World' ...],
 git_activity: [{type: 'pr', hook:'3142ji3423j342'}],

 selfies: [0x13423423423423, 0x13423434324234]
}

24

Overloaded Documents
{
 name: 'Norberto',
 role: 'Technical Evangelist',
 talks: [
 {
 title: 'Document Database Schema Design',
 description:'This talk is a short introduction...',
 schedule: '12:10 - 12:25'
 },
 {
 title: 'Scalable Cluster in 15 minutes!',
 description: 'This talk is a quick introduction...',
 schedule: '14:50 - 15:05'}
]
 twitter: 'nleite',
 email: 'norberto@mongodb.com',
 bio: 'Norberto Leite is Technical Evangelist...'
...
}

100% data usage

25

Overloaded Documents

 ...
 address: 'Calle Artistas, Madrid',
 supporter: { clube: 'FC Porto',
 description: 'Best Club in the WORLD' }
 conferences: ['GOTO', 'MongoDB World' ...],
 git_activity: [{type: 'pr', hook:'3142ji3423j342'}]
 selfies: [0x13423423423423, 0x13423434324234]
 ...
}

0.1% data
usage ?

26

Highly Nested Documents
{
 name: 'Some Dude',

 arguments: [
 {
 properties: [
 {
 fields: [
 topics: {
 a:1,
 ...
 }
]
 }
]
 }
]
 }
}

Please, don't go
further than 5
levels!

27

Collection over-Normalization

Is it Easy?

29

Final Notes

•  Think on how you want your data to be used
•  Don't be afraid of making mistakes

–  It's normal (to normalize) and to make the first
attempts with a relational mindset in place

•  Make use of the flexibility of schema do adjust or
schema design

•  Talk to us if you need help!

