
Progress toward an
Engineering Discipline

of Software

Mary Shaw
Institute for Software Research

Carnegie Mellon University

What does it mean to have an
engineering discipline for software?

How far has software engineering
progressed toward that goal?

What are the next steps?

with examples from civil engineering

and software architecture

What is “engineering"?

Definitions abound

They have in common:
Creating cost-effective solutions ...

 ... to practical problems ...
 ... by applying scientific knowledge ...

 ... building things ...
 ... in the service of mankind

Engineering enables ordinary people
to do things that formerly required virtuosos

What is “engineering"?

Definitions abound

They have in common:
Creating cost-effective solutions ...

 ... to practical problems ...
 ... by applying codified knowledge ...

 ... building things ...
 ... in the service of mankind

Engineering enables ordinary people
to do things that formerly required virtuosos

Characteristics of engineering

§  limited time, knowledge, and resources
force decisions on tradeoffs

§  best-codified knowledge, preferentially
science, shapes design decisions

§  reference materials make knowledge and
experience available

§  analysis of design predicts properties of
implementation

Engineering evolves from craft and commerce;
it requires scientific foundations, or at least
systematically codified knowledge.

Exploiting technology requires both
management and a body of systematic,
scientific knowledge.

Science often arises from progressive
codification of practice.

Civil Engineering as Model

Civil Engineering

Example:
 Bridges and Arches

Wikimedia: Steve Goossens

1st Century CE

Craft of bridges

Romans

Renaissance
& Industrial
Revolution

Scientific
Engineering

Empirical progress via
failure and repair

No deliberate application
of mathematics to
determine size or shape

Little theory, but
construction methods
lasted until 19th century

Vitruvius: De Architectura
[about 25 BC]

15th century

river bottom

river

bridge deck

 Ironbridge at Coalbrookdale, 1779

Wellcome Images, a website operated by Wellcome Trust, a global charitable foundation based in the United Kingdom.

Mary Shaw

Dee Bridge disaster, 1847

Illustrated London News, 1847

Business of bridges

Romans

Renaissance
& Industrial
Revolution

Scientific
Engineering

Increasingly long spans,
lighter structures

Rules of thumb about
proportions

Explanation of structures:
o  Brunelleschi on arches

and domes 15th century

o  Galileo on beams 17th century

Introduction of cast iron,
wrought iron, steel, and
reinforced concrete

Hardest problem was identifying the proper basic concepts, e.g. force.

Composition
of forces

Statics

Varignon & Newton
late 17th century

Bending

Strength of
materials

Coulomb & Navier

early 18th century

New mathematics was needed (calculus).

Fundamental Problems

Theories that solved these problems

Wikimedia: Velela

Engineering of bridges

Romans

Renaissance
& Industrial
Revolution

Scientific
Engineering

1700: good theories
 (statics, strength
 of materials)

1750: tabulations of
 properties of
 materials

1850: formal analysis of
 a bridge

structure

1900: structural analysis
 worked out

1950: systematic theory

2000: design automaton

21st century

PennDOT now requires use of its software
for automated design of simple bridges

o PennDOT’s Bridge Automated Design and
Drafting Software (BRADD) automates bridge
design from problem definition through CAD
drawing.

o BRADD designs concrete, steel, and concrete
bridges with spans of 18 feet to 200 feet.

o http://bradd.engrprograms.com/home/

§  Table 2.3-2 Matrix of Abutment Types
versus Superstructure Types

§  [[get scan of this table]]

Wikimedia: Steve Goossens

Evolution of civil engineering

Software Engineering

Software engineering as engineering

From the definition of engineering:

Creating cost-effective solutions ...

 ... to practical problems ...
 ... by applying codified knowledge ...

 ... building things ...
 ... in the service of mankind

Software engineering as engineering

From the definition of engineering:

The branch of computer science that …
… creates cost-effective solutions ...

 ... to practical computing problems ...
 ... by applying codified knowledge ...

 ... developing software systems ...
 ... in the service of mankind

Software is design-intensive -- manufacturing costs are minor

Software is symbolic, abstract, and constrained more by intellectual
complexity than by fundamental physical laws

"Software Engineering"

Rallying Cry

Phrase introduced 1968
to draw attention to
“the software crisis”

Aspiration, not description

By some reports, “software engineering” was
coined by Margaret Hamilton a few years earlier;
the 1968 and 1969 NATO conferences brought
the phrase into widespread use

Craft practice, 1968

§  Monolithic development, merging
research, development, production

§  Software fine in many areas, but
not for life-critical applications

§  Widening gap between ambitions
and achievement, increasing risk

§  Software is late, over cost estimate,
doesn’t meet specifications

§  Too much revolution, not enough
evolution

NATO Science Committee, 1968

Production techniques

Systematic software development methods
bring order and predictability to projects
via structure and project management
(1970-1990s)

Structured programming
Waterfall models
Incremental and iterative development

Cost/schedule estimation
Process maturity

Extreme, agile processes

Commerce drives science

Science is often stimulated by problems in
commercial practice

safety-critical tasks è safety analysis
large systems è architectural patterns
concurrency è parallel logics & languages

large state spaces è model checking
many versions è program families, inheritance

huge data sets è MapReduce scalability
adaptive systems è MAPE model

Codified knowledge
Data structures, algorithms
Programming languages and semantics

Verification and model checking

Objects and abstract data types

Static and dynamic analysis

Software architectures

Model-based engineering

Pattern languages

Computability

. . .

Research
feeds
practice

E. Lazowska.
Viewpoint.
CACM Aug 2008

Research and development
stimulates creation of
innovative ideas and industries.

Research
feeds
practice

E. Lazowska.
Viewpoint.
CACM Aug 2008

Research and development
stimulates creation of
innovative ideas and industries.

Increasing
Abstraction
Scale

Design
guidance

Choosing
among
algorithms
based on
the problem
setting

Design
guidance

Choosing among
algorithms based
on the problem
setting

Software Architecture

Software architecture …

§  … is principled understanding of the
large-scale structure of software systems
as collections of interacting elements

§  … emerged 1990s from informal roots
§  … codifies a vocabulary for software

system structures based on types of
components and connectors

§  … provides guidance for explicit design
choices bridging requirements to code

45

M. Conway: Design of a Separable Transition-diagram Compiler, CACM Jul 1963

with a program transformation

E.W. Dijkstra, The Structure of the “THE” Multiprogramming System. CACM May 1968

46

Multics, 1972

[[layered operating system diagram]]

47

http://www.multicians.org/architecture.html

A layered system !!
47

Craft practice

Software has always had structure
o  Informal vocabulary

–  Objects, pipes/filters, interpreters, repositories …

o  Intuitions and folklore about fitness to task

Ancient examples (since NATO69) :
o Software bundled with hardware

o Compilers, layered operating systems
o Databases for accounting

48

49 49 49

50 50 50

51 51 51 51

A7E avionics architecture, as shown in Bachman et al
Software Documentation in Practice, SEI 2000

Commerce stimulates science

uncertainty about models to
quality, performance, è support software

changeability, etc metrics

ad hoc structure, styles /patterns

multiple versions, è for software

interoperability architecture

issues, design drift

Sample idioms / styles / patterns

§  layers
o  virtual machines <hierarchy of abstractions>

o  client-server systems <decomposition of function>

§  data flow
o  batch sequential <indep. programs, batch data>
o  pipes and filters <transducers, data streams>

§  interacting processes
o  communicating processes <processes, messages>

o  event systems <processes, implicit invocation>

Explanations for practitioners

N-Tier architecture

http://www.codeproject.com/Articles/430014/N-Tier-Architecture-and-Tips

http://www.pcmag.com/encyclopedia/term/53927/virtual-machine

Virtual machine

Commercial practice

1970s: batch processing
o  modules and procedure calls, Cobol

1980s: informal “architecture” in papers
o  colloquial use of architectural terms

1990s: early structure
o  software product lines

2000s: architecture research enters practice
o  company-specific overall architectures

o  frameworks, UML
o  objects everywhere

Maturation of scientific ideas

57

Basic
Research
Recognize
problem,

Invent ideas

Concept
Formation

Refine ideas,
publish

solutions

Development
& Extension

Try it out,
clarify,
refine

Internal
Exploration

Stabilize,
port, use for

real problems

External
Exploration

Broaden
user group,

extend

Popular-
ization

Propagate
through

community

Sam Redwine, Jr. and William Riddle: Software Technology Maturation,
Proc ICSE-8, May 1985

15-20 years

Maturation of software architecture
 Foundations

 Basic Research

Concepts

Development

Internal Exp/Ext

External Exp/Ext

Popularization

1985 1990 2010 2005 2000 1995

Garlan and Shaw. Software architecture: reflections on an evolving discipline. ESEC/FSE keynote 2011

Foundations

59

 Foundations

 Basic Research

Concepts

Development

Internal Exp/Ext

External Exp/Ext

Popularization

1985 1990 2010 2005 2000 1995

 Supporting concepts from software
 engineering evolved on their
 own 15- to 20-year cycles,
 related concepts continue to evolve

Basic research, 1985-1993
 Foundations

Concepts

Development

Internal Exp/Ext

External Exp/Ext

Popularization

 Basic Research

1985 1990 2010 2005 2000 1995

Basic descriptive models:
Product lines for specific domains
Catalogs of common idioms
Connectors as well as components

M. Shaw & P. Clements. The Golden Age of Software
Architecture. IEEE Software Mar/Apr 2006

Concept formation 1992-1996
 Foundations

 Basic Research

Concepts

Development

Internal Exp/Ext

External Exp/Ext

Popularization

1985 1990 2010 2005 2000 1995

Elaboration of basic models
Languages and formalizations
Taxonomies of architectural patterns
Workshops and books

Development & extension: 1995-2000
 Foundations

 Basic Research

Concepts

Development

Internal Exp/Ext

External Exp/Ext

Popularization

1985 1990 2010 2005 2000 1995

Unification and refinement
Second generation concepts
Institutions, conferences

Internal exploration: 1996-2003
 Foundations

 Basic Research

Concepts

Development

Internal Exp/Ext

External Exp/Ext

Popularization

1985 1990 2010 2005 2000 1995

Explicit attention to architecture in design
Architecture’s role in quality attributes
Analysis and evaluation techniques
Books on practice

External exploration: 1998-present
 Foundations

 Basic Research

Concepts

Development

Internal Exp/Ext

External Exp/Ext

Popularization

1985 1990 2010 2005 2000 1995

Technologies useful beyond
development group
Tools and frameworks
Company-specific architectures

Popularization: 2000-present
 Foundations

 Basic Research

Concepts

Development

Internal Exp/Ext

External Exp/Ext

Popularization

1985 1990 2010 2005 2000 1995

Production-quality, supported,
commercialized technology, standards
Education, professional organizations
Architect as senior technical leader

http://xkcd.com/676/

Systematically
Organized
Knowledge

SEI Series organizes
knowledge about

architecture and its
analysis

Architectural styles and reasoning
Style class Characteristic Reasoning

Data flow Styles dominated by motion of data through the
system, no “upstream” content control by recipient Functional compos-

ition, latency

Closed loop
control

Styles that adjust performance to achieve target Control theory

Call-and-
return

Styles dominated by order of computation, usually
with single thread of control Hierarchy (local

reasoning)

Interacting
processes

Styles dominated by communication patterns among
independent, usually concurrent, processes Nondeterminism

Data sharing
styles

Styles dominated by direct sharing of data among
components Representation

Data-centered
repositories

Styles dominated by a complex central data store,
manipulated by independent computations ACID properties,

transaction rates,
data integrity

Hierarchical Styles dominated by reduced coupling, with resulting
partition of the system into subsystems with limited
interaction

Levels of service

Shaw, Clements. Toward Boxology. ISAW-2, 1996.

Rules of thumb on data flow

If your problem is decomposed into sequential stages,
consider batch sequential or pipeline architectures.

If each stage is incremental, so that later stages can begin
before earlier stages finish, consider a pipeline architecture.

But avoid if there is a lot of concurrent access to shared data.

If your problem involves transformations on continuous
streams of data (or on very long streams), consider a
pipeline architecture.

However, if your problem involves passing rich data
representations, avoid pipelines restricted to ASCII.

If your system involves controlling continuing action, is
embedded in a physical system, and is subject to
unpredictable external perturbation so that preset
algorithms go awry, consider closed loop architectures.
Shaw, Clements. Toward Boxology. ISAW-2, 1996.

Generality-power trades
Styles, Platforms, and Product Lines

Specialization

Po
w

er

Low

High

Low High

Generic
Component
Integration
Platforms

Domain-Specific
Component
Integration
Platforms

Generic Styles

Generic Style
Specializations

Product Lines

Data Flow
Call-Return

Events
…

Pipes & Filters
Process Control

...

CORBA
COM

JavaBeans
Android

...

AUTOSAR
HLA
IOS
...

Bosch Engine Control
Siemens Healthcare for 3D

...

Garlan. Software Architecture: A Travelogue. ICSE 2014.

Illustrated London News, 1847

But is it “Engineering” yet?

But is it “Engineering” yet?

“Engineering” is associated with a level of
assurance that protects the public health,
safety, and welfare.

Consider, though
o Toyota unexpected acceleration
o Many data breaches (retail, government, …)

o Samsung Galaxy S5, S6 keyboard exploit
o HealthCare.gov rollout
o Sony cyberattack

o TurboTax vulnerability
o  . . .

Illustrated London News, 1847

Toyota unintended acceleration

§  Throttle stuck open, driver couldn’t stop car
o  Hundreds died/injured in 2002-2010 models

o  Toyota denied claims but settled for $1.6++ Billion

§  Electronic Throttle Control System (ETCS)
o  wide open throttle à brakes won’t stop car
o  single-bit failure could kill critical subtask

§  Software didn’t follow known good practices
o  watchdog didn’t detect major task failure

o  cyclomatic complexity often over 50

o  poor coding practice, ~10,000 global variables
o  recursion could cause uncaught stack overflow

o  poor development/testing process compliance

Phil Koopman http://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html

http://www.idtheftcenter.org/

Characteristics of engineering

limited time, knowledge, and resources
force decisions on tradeoffs

best-codified knowledge, preferentially
science, shapes design decisions

reference materials make knowledge and
experience available

analysis of design predicts properties of
implementation

Making Progress

Want to be part of this?
http://isri.cmu.edu/education/

Shaw: Sufficient Correctness and Homeostasis in Open Resource Coalitions: How Much Can You Trust Your Software System? ISAW-4, 2000

Shaw: Sufficient Correctness and Homeostasis in Open Resource Coalitions: How Much Can You Trust Your Software System? ISAW-4, 2000

Shaw: Sufficient Correctness and Homeostasis in Open Resource Coalitions: How Much Can You Trust Your Software System? ISAW-4, 2000

Adapting to evolving technology

§  Technology outruns traditional manuals
o Understand how search supplants indexing
o Analog of MapReduce for documentation?

§  Agility, “perpetual beta”, and evolution
o Exploit power end of generality tradeoff,

embedding knowledge in task-specific tools

§  Scaling cost to consequence, predictably
o High stakes applications have rigorous

engineering, mashups are fine for
throwaways – but where is middle ground?

§  How do we bring codified knowledge to design?
Exhortation won’t work

Civilize the electronic frontier

Infrastructure and amenities
Civil order, good manners, rule of law

Empowerment of citizens to manage their
own affairs

Clarity on personal security/responsibility

This requires widespread understanding of the
technology and shared expectations about its use

There are lots of casual developers

C. Scaffidi, M. Shaw, and B. Myers. Estimating the Numbers of End Users
and End User Programmers. VL/HCC'05, pp. 207-214, 2005.

Education

Self-taught 41.8%
BS in CS (or related) 37.7%
On-the-job training 36.7%
MS in CS(or related) 18.4%
Online class 17.8%
Some univ, no degree 16.7%
Industry certification 6.1%
Other 4.3%
Boot-camp 3.5%
PhD in CS(or related) 2.2%
Mentorship program 1.0%

Estimated counts in American workplace

http://stackoverflow.com/research/developer-survey-2015

“Professional and enthusiast programmers”
(international)

Demographics of US Internet users

Overall Total adults 87%
 Women 87
 Men 86

Age 18-29 97%
 30-49 93
 50-64 88

 65+ 57

Geography urban 88%
 suburban 87

 rural 83

Education <= high school 76%
 some college 91
 college + 97

Pew Internet & American Life Project, Jan 2014 http://www.pewinternet.org/data-trend/internet-use/latest-stats/

http://www.pewinternet.org/2010/12/16/generations-2010/

http://www.pewinternet.org/2010/12/16/generations-2010/

Civilizing the electronic frontier

§  Policy, requiring technology
o  Balance anonymity and accountability

o  Balance security and privacy
o  Balance individual and corporate objectives

o Address product liability

§  Technology
o Apply known best practices and designs
o Address new forms of information access (search)

and software creation (independent parts)

§  User models
o  Improve the explanations and intuitions we

provide the public at large

Recapitulation
Engineering evolves from craft and
commercial practice via science

Engineering basis evolves via
increasingly powerful abstractions

Ideas evolve over time from pure
research to practical production

The greatest need for engineering
Is in the most critical applications

