What <<b u s i n e s s>> can learn from Dating

Rik Van Bruggen @rvanbruggen

Neo Technology Overview

Company

- Neo Technology, Creator of Neo4j
- 90 employees with HQ in Silicon Valley, London, Munich, Paris and Malmö
- \$45M in funding from Fidelity, Sunstone, Conor, Creandum, Dawn Capital

Product

- Neo4j World's leading graph database
- 1M+ downloads, adding 50k+ per month
- 170+ enterprise subscription customers including over
 50 of the Global 2000

How Customers Use Neo4j

eHarmony

Social

viadeď

Cloubl 3

%one**fine**stay

gamesys

NATIONAL GEOGRAPHIC

Master Data Management **Identity &** Access

TOMTOM

₺LifeWay.

Didacti

aikux.com

Neo4j Leads the Graph Database Revolution

"Graph analysis is possibly the single most effective competitive differentiator for organizations pursuing data-driven operations and decisions after the design of data capture."

"Forrester estimates that *over 25% of enterprises* will be using graph databases by 2017"

"Neo4j is the current market leader in graph databases."

IT Market Clock for Database Management Systems, 2014

https://www.gartner.com/doc/2852717/it-market-clock-database-management

TechRadar™: Enterprise DBMS, Q1 2014

http://www.forrester.com/TechRadar+Enterprise+DBMS+Q1+2014/fulltext/-/E-RES106801

Graph Databases – and Their Potential to Transform How We Capture Interdependencies (Enterprise Management Associates)
http://blogs.enterprisemanagement.com/dennisdrogseth/2013/11/06/graph-databasesand-potential-transform-capture-interdependencies/

High Business Value in Data Relationships

Data is increasing in volume...

- New digital processes
- More online transactions
- New social networks
- More devices

... and is getting more connected

Customers, products, processes, devices interact and relate to each other

Using Data Relationships unlocks value

- Real-time recommendations
- Fraud detection
- Master data management
- Network and IT operations
- Identity and access management
- Graph-based search

We need to p and use the s

Relational DBs Can't Handle Relationships Well

- Cannot model or store data and relationships without complexity
- *Performance degrades* with number and levels of relationships, and database size
- Query complexity grows with need for JOINs
- Adding new types of data and relationships requires schema redesign, increasing time to market

... making traditional databases **inappropriate** when data relationships are valuable in **real-time**

Slow development Poor performance Low scalability Hard to maintain

Aggregate Stores Don't Handle Relationships

- No data structures to model or store relationships
- No query constructs to support data relationships
- Relating data requires "JOIN logic" in the application
- No ACID support for transactions

... making NoSQL databases **inappropriate** when data relationships are valuable in **real-time**

Neo4j – Re-Imagine Your Data as a Graph

Neo4j is an *enterprise-grade graph database* that enables you to:

- Model and store your data as a graph
- Query data relationships with ease and in real-time
- Seamlessly evolve applications
 to support new requirements by
 adding new kinds of data and
 relationships

Agile development
High performance
Vertical and horizontal scale
Seamless evolution

The Whiteboard Model <u>Is</u> the Physical Model

Key Neo4j Product Features

Native Graph Storage

Ensures data consistency and performance

Native Graph Processing

Millions of hops per second, in real time

"Whiteboard Friendly" Data Modeling

Model data as it naturally occurs

High Data Integrity

Fully ACID transactions

Powerful, Expressive Query Language

Requires 10x to 100x less code than SQL

Scalability and High Availability

Vertical and horizontal scaling optimized for graphs

Built-in ETL

Seamless import from other databases

Integration

Drivers and APIs for popular languages

So... What CAN Business learn from dating?

The 5 graphs of love

- The friends of friends graph
- The passion graph
- The location graph
- The safety graph
- The poser graph

Meet Jeremy

Jeremy

Jeremy has some friends

пеоці

• Kerstin: his sister

• Peter: his friend

• Andreas: his colleague

Andreas

His friends introduced some more friends

- Michael: master hacker, divorce, 2 children
- Johan: technology sage, likes fast cards
- Madelene: polyglot journalist, loves dogs

Allison: marketing maven, likes long walks on the beach

Madelene

So we have a bunch of people

So we have a bunch of people

- How do we know they're friends?
- Either ask each pair: are you friends?
- Or we can add explicit connections
- Twitter, Facebook, LinkedIn, Snapchat etc

So we have a bunch of people

Neo4j: The world's leading graph database

- optimised for the connections between records
- 'pre computed indexes' between records
- really, really fast at querying across records
- A relational database may tell you the average age of everyone here...

...but a graph database will tell you who's most likely to buy you a beer later

Friends of friends graph

- According to SNAP Interactive if you are a female user, you have a:
 - 4% likelihood of interacting with a stranger
 - 10% likelihood of interacting with a friend of friend
 - 7% likelihood of interacting with a 3rd degree connection (friend of a friend)
 - Connections mean a much larger number of interactions = #win

Friends

Amanda

Friends of friends

Find Jeremy's FoFs


```
1 //Who are Jeremy's FoFs?
2 MATCH (Jeremy:User{name:"Jeremy"})-[:KNOWS]->
3 (friend)-[:KNOWS]->(fof)
4 RETURN fof
```

Who does Jeremy shares the most friends with?


```
1 //Who does Jeremy share the most friends with?
2 MATCH (Jeremy:User{name:"Jeremy"})-[:KNOWS]->(friend)
3 -[:KNOWS]->(fof)
4 RETURN distinct fof,length(collect(friend)) as FriendsInCommon
5 ORDER BY FriendsInCommon desc
```


Peter

Andreas

Jake

Jennifer

:WANTS_TO_DATE :WANTS_TO_DATE :WORKS_FOR :FRIENDS ler nifer Jake

:WANTS_TO_DATE

Peter

Awkward!

:WANTS_TO_DATE

It's complicated!

Friends of friends


```
1 //FoFoF Long
2 MATCH (:User)-[:KNOWS]->(friend)-[:KNOWS]->(FoF)-
[:KNOWS]->(FoFoF)
```

3 RETURN FoFoF

Friends of friends

- 1 //FoFoF Long
- 2 MATCH (:User)-[:KNOWS]->(friend)-[:KNOWS]->(FoF)[:KNOWS]->(FoFoF)
- 3 RETURN FoFoF
- 1 //FoFoF Short
- 2 MATCH (:User)-[:KNOWS*3]->(FoFoF)
- 3 RETURN FoFoF

Meet Jon...

- from: UK
- seeking: females
- appearance: hot, hot, hot!
- personality: fun loving, easy going
- interests: cooking, chemistry

- 1 MATCH (Jon:User{name:'Jonathan'})
- 2 RETURN Jon

The passion graph

 Jon wants to find someone he can share his passions with

- 1 MATCH (Jon:User{name:'Jonathan'})
- 2 RETURN Jon

Match specific interests

Match specific interests

:REPORTED_INTEREST

Jon

- 1 MATCH (date)-[:REPORTED_INTEREST]->(interest)
- 2 WHERE interest.name = "Foodie" AND date.gender = 'F'
- 3 RETURN date

Match specific interests

:HAS_INTEREST

Jon

MATCH (Jeremy: User {name: "Jonathan"})-[:HAS_INTEREST]->(interest)

MATCH (interest)<-[:HAS_INTEREST]-(anotherPerson)

Anne

RETURN interest, another Person

Julia

Jennifer

The location graph

 Jon wants to find a date but refuses to have a long distance relationship

- 1 MATCH (Jon:User{name:'Jonathan'})
- 2 RETURN Jon

The location graph

- 1 START date = node('withinDistance:[51.99,-0.19, 100.0]')
- 2 WHERE date.gender = 'F'
- 3 RETURN date

The safety graph

Jon uses social networks

Let's dig into his Twitter

He follows some strange people...

BooBooLoon @YodasMethDealer Doritos logo enthusiast.

Following

WEBSITE

Q.UBrine

Fernando @ParisDrugLord 19 · Rap Shuffle · First Professionally Made Rap Shuffle Magazine (80+Pages) Coming Soon • Ugly

Following

DrugLord Records @DrugLordRecords

NYC-based boutique record label with the philosophy: CRIME IS LORD Artists: @TheLaBiancas

Following

Drug Lord @the_high_life

This is not about weed. Butt connoisseur, Quote RT me and you'll get blocked

Following

Beyoncé is a virgo & I am too, so basically I AM Beyoncé, Flawless :-

Following

Cocaine So White... @CocaineSoWhite

Original Cocaine So White Account

Following

Meth Tweets @DontMethWithMe

Meth 24/7 Email: methtweets@yahoo.com

Following

...and tweets about strange things!

Tweets

Jonathan Dreamyman @JonathanDreamym · now

Chemistry sucks in general but illegal drugs are fabulous.

Expand

Jonathan Dreamyman @JonathanDreamym · 14m

Walter could add my secret ingredient, vanilla extract! I get lots of sales in the hood.

Expand

◆ Reply # Delete ★ Favorite *** More

Jonathan Dreamyman @JonathanDreamym · 17m

Walter White is my hero!

Expand

◆ Reply

☐ Delete

★ Favorite

*** More

Jonathan Dreamyman @JonathanDreamym · 17m

I am a huge fan of making drugs!

Expand

Jonathan Dreamyman @JonathanDreamym - 18m

I met a drug dealer last weekend. He was awesome! His gf was quite a nice lady as well.

Expand

Some basic word analysis

Tweets

Jonathan Dreamyman @JonathanDreamym · now

Chemistry sucks in general but illegal drugs are fabulous.

Expand

Jonathan Dreamyman @JonathanDreamym · 14m

Walter could add my secret ingredient, vanilla extract! I get lots of sales in the hood.

Expand

◆ Reply # Delete ★ Favorite *** More

Jonathan Dreamyman @JonathanDreamym · 17m

Walter White is my hero!

Expand

◆ Reply

☐ Delete

★ Favorite

*** More

Jonathan Dreamyman @JonathanDreamym · 17m

I am a huge fan of making drugs!

Jonathan Dreamyman @JonathanDreamym - 18m

I met a drug dealer last weekend. He was awesome! His gf was quite a nice lady as well.

Expand

Let's update based on behaviour

:DEMONSTRATED_INTEREST


```
1 CREATE (Jonathan:Person{name:"Jonathan Dreamyman"})
```

- 2 -[:DEMONSTRATED_INTEREST]->
- 3 (drugs:Interest{name:"Drugs"})

Any ladies ok with this?


```
1 //Jon's FoFs who like Drugs
2 MATCH (date:User)-[:KNOWS*2]-(Jon:User{name : 'Jonathan'}),
3 (date)-[*..2]-(Drugs:Interest{name:'Drugs'})
4 WHERE date.gender = 'F'
5 RETURN distinct date
```

Any ladies ok with this?

- 1 //Jon's FoFs who like Drugs
- 2 MATCH (date:User)-[:KNOWS*2]-(Jon:User{name : 'Jonathan'}),
- 3 (date)-[*..2]-(Drugs:Interest{name:'Drugs'})
- 4 WHERE date.gender = 'F'
- 5 RETURN distinct date

Jennifer

Jane

Maria

The passion graph

Jon loves Ajax

:HAS_INTEREST

Jon

:HAS TEAM

:HAS TEAM

The poser graph

 Jon has no luck with online dating. All of his interactions are with spam profiles

The poser graph

 Let's find real people with at least 1 social network and a minimum of 2 posts

Find ladies who aren't spam bots

1 //Find real people
2 MATCH (date:User)-[:KNOWS*2]-(Jon:User{name : 'Jonathan'}),
3 (date)-[r:HAS_SN]->(SN)
4 WHERE date.gender = 'F' AND r.posts > 2
5 RETURN distinct date

Find ladies who like football

Find ladies who like football

Katie


```
1 // Jon's FoF's who like football
2 MATCH (date:User)-[:KNOWS*2]-(Jon:User{name: 'Jonathan'}),
        (date)-[*..2]-(a:Interest{name: "Football"})
 WHERE date.gender = 'F'
 RETURN distinct date
```

Jennifer

Greta

Find Jon's perfect date


```
MATCH (date:User)-[:KNOWS*2]-(Jon:User{name: 'Jonathan'}),

(date)-[:HAS_INTEREST]->(food:Interest{name: 'Foodie'}),

(date)-[*..2]-(a:Interest{name: 'Football'}),

(date)-[*..2]-(Drugs:Interest{name: 'Drugs'})

WHERE date.gender = 'F'

RETURN distinct date
```

Find Jon's perfect date

Jon


```
1 MATCH (date:User)-[:KNOWS*2]-(Jon:User{name: 'Jonathan'}),
        (date)-[:HAS_INTEREST]->(food:Interest{name:'Foodie'}),
        (date)-[*..2]-(a:Interest{name:'Football'}),
        (date)-[*..2]-(Drugs:Interest{name:'Drugs'})
  WHERE date.gender = 'F'
  RETURN distinct date
                 :PERFECT FOR
                                           Iennifer
```


:HAS_DATE_WITH

Jennifer

Jon and Jennifer delete their profiles and sail off into the sun set


```
1 MATCH (Jon:User{name:'Jonathan'})-[a]-(),(Jen:User{name:'Jennifer'})-[b]-()
2 DELETE a,b,Jon,Jen
```

```
CYPHER MATCH (Jon:User{name:'Jonathan'})-[a]-(),(Jen:User{name:'Jennifer'})-[b]-() DELETE a,b,Jon,Jen
```

✓ Deleted 2 nodes, deleted 16 relationships, returned 0 rows in 165 ms

Jon Jennifer

What's that got to do with Business?

Take a look at "Fraud"

Why Fraud?

Types of Fraud

- First-Party Fraud
- Synthetic Identities and Fraud Rings
- Insurance Fraud
- Ecommerce Fraud

Types of Analysis

- Traditional Analysis
- Graph-Based Analysis

Fraud Detection and Prevention

First-Party Fraud

 Fraudster's aim: apply for lines of credit, act normally, extend credit, then...run off with it

 Fabricate a network of synthetic IDs, aggregate smaller lines of credit into substantial value

- Often a hidden problem since only banks are hit
 - Whereas third-party fraud involves customers whose identities are stolen

So what?

- \$10's billions lost by US banks every year
- 25% of the total consumer credit write-offs in the USA
- Around 20% of unsecured bad debt in EU and USA is misclassified
 - In reality it is first-party fraud

These are **enormous**

numbers

Fraud Ring

Then the fraud happens...

- Revolving doors strategy
 - Money moves from account to account to provide legitimate transaction history
- Banks duly increase credit lines
 - Observed responsible credit behaviour
- Fraudsters max out all lines of credit and then bust out

... and the bank loses

- Collections process ensues
 - Real addresses are visited
 - Fraudsters deny all knowledge of synthetic IDs
 - Bank writes off debt
- Two fraudsters can easily rack up \$80k
- Well organised crime rings can rack up many times that

Discrete Data Analysis fails to predict...

Number of accounts

...and Makes it Hard to React

- When the bust out starts to happen, how do you know what to cancel?
- And how do you do it faster then the fraudster to limit your losses?
- A graph, that's how!

Probably Non-Fraudulent Cohabiters

\$ MATCH (p1:Person)-[:HOLDS|LIVES_AT*]->()<-[:HOLDS|LIVES_AT*]-(p2:Person) WHERE p1 <> p2 RETURN p1 LIMIT 10

Probable Cohabiters Query


```
MATCH (p1:Person) - [:HOLDS|LIVES_AT*] -> ()
          <-[:HOLDS|LIVES_AT*] - (p2:Person)

WHERE p1 <> p2
RETURN DISTINCT p1
```

Dodgy-Looking Chain

Risky Card Numbers


```
MATCH (p1:Person) - [:HOLDS|LIVES AT*] -> ()
  <-[:HOLDS|LIVES AT*]-(p2:Person)
  -[:HOLDS|LIVES \overline{A}T^*]->()
  <-[:HOLDS|LIVE\overline{S} AT^*]-(p3:Person)
WHERE p1 <> p2 AND p2 <> p3 AND p3 <> p1
WITH p1, p2, p3
MATCH (p1) - [:OWNS] -> (c1:CreditCard),
  (p2) - [:OWNS] -> (c2:CreditCard),
  (p3) - [:OWNS] -> (c3:CreditCard)
UNWIND [c1, c2, c3] AS creditCardNumbers
RETURN creditCardNumbers
```


Let me just repeat that

How does this fit with traditional fraud prevention?

Gartner's Layered Fraud Prevention Approach (4)

Ask for help if you get stuck

- Online training http://neo4j.com/graphacademy/
- Videos http://vimeo.com/neo4j/videos
- Use cases http://www.neotechnology.com/industries-and-use-cases/
- Meetups every week in Southwark
- Book @ http://www.graphdatabases.com

Or ping me?

rik@neotechnology.com

@rvanbruggen

+32 478 686800

blog.bruggen.com

www.neo4j.com

Thanks for listening

