
Things I wish I'd known before I started 
with Microservices

1

GOTO Amsterdam - June 18, 2015



Who are we?

2

Steve Judd - Lead Consultant
Tareq Abedrabbo - CTO

OpenCredo - an Open Source software consultancy



Things I wish I'd known before I started with 
Microservices 

What?

Why?

How?

3

Agenda



What’s the story morning glory?

4

“Gotta have a definition, right?”



• It is an architecture 
• Independently deployable software components 

(services) 
• Stateless, loosely coupled, resilient 
• Communicate via explicit, published APIs 
• Each service fulfils a single business capability 
• Automated testing and deployment is essential 

• It’s a choice
• It’s not the only one 
• Commitment is key

5

WHAT



So, what’s the big deal?

6

Go on, convince me….



• Encourages: 
★ loose-coupling 
★ separation of concerns 
★ single responsibility principle 
★ domain-driven design 

• Good fit with Agile development practices 
• Well-suited to a containerised infrastructure

7

WHY



8

And are Microservices really the new black?

Monoliths: friend or foe?



9

Monoliths
• Familiar & well-

understood 
• Easy to develop, build & 

deploy 
• Consequences of 

changing domain design 
are localised 

• Limited scaling choices 
• Long-term commitment to 

tech stack (technology 
lock-in)

Microservices
• Flexible scaling options 
• Enables independence in 

development and 
deployment 

• Reduces technology lock-in 
• Better fault tolerance 
• Build/deploy/execution 

infrastructure is complex 
(automation a must) 

• Getting the domain (service) 
boundaries right can be 
difficult

WHY



10

Monoliths
• Familiar & well-

understood 
• Easy to develop, build & 

deploy 
• Consequences of 

changing domain design 
are localised 

• Limited scaling choices 
• Long-term commitment to 

tech stack (technology 
lock-in)

Microservices
• Flexible scaling options 
• Enables independence in 

development and 
deployment 

• Reduces technology lock-in 
• Better fault tolerance 
• Build/deploy/execution 

infrastructure is complex 
(automation a must) 

• Getting the domain (service) 
boundaries right can be 
difficult

WHY



11

Monoliths
• Familiar & well-

understood 
• Easy to develop, build & 

deploy 
• Consequences of 

changing domain design 
are localised 

• Limited scaling choices 
• Long-term commitment to 

tech stack (technology 
lock-in)

Microservices
• Flexible scaling options 
• Enables independence in 

development and 
deployment 

• Reduces technology lock-in 
• Better fault tolerance 
• Build/deploy/execution 

infrastructure is complex 
(automation a must) 

• Getting the domain (service) 
boundaries right can be 
difficult

WHY



The importance of contracts

12

“Until the contract is agreed, nothing is real”



• Design your API contracts first 
• Communicate them well 
• Use tools to document them, e.g 

• apidocjs (http://apidocjs.com/)

• swagger (http://swagger.io)

• spring-restdocs (https://github.com/spring-projects/spring-restdocs)


• Be mindful of the impact of changing an API

13

HOW

http://apidocjs.com/


• If you don’t specify your contract, you end up with an 
implicit one anyway 

• Use the power of resources (HTTP and REST) 
✤ Links and locations 
✤ Uniform interface and status codes 
✤ Representations

14

HOW



Does size matter?

15

Provide as many APIs and Services as you need but no more



• Size - what really matters is quality not quantity 
• Services should be decoupled conceptually so that 

they can evolve independently 
• Services should be decoupled technically so that they 

can be managed independently 
• What do I do, practically? 

• Co-locate services, but avoid implicit dependancies 
though shared common objects 

• Separate services but avoid sharing (domain) libraries

16

HOW



• Don’t stress about how many APIs or Services 
• Do stress about designing an appropriate domain models 

for your services 
• Don’t separate your services based on technical 

boundaries 
• Do separate your services based on self-contained 

functions

17

HOW



Separating the men from the boys

18

What does a good microservice look like?



• Logging & monitoring 
✤ Centralised collection 
✤ Many more moving parts 

• How the services are managed 
• External configuration 
• Handling failure 
• Inter-process communication 

✤ Message serialisation/deserialisation 
✤ Network overhead

19

HOW



And finally….

20



1. Specify your contracts first AND communicate them 

2. Design for scale: infrastructure, processes, services 

3. You’ll need to pay the Distributed Service Tax 

4. Everything is a Service (aka eat your own dogfood) 

5. Invest in tooling and automation

21

Final takeaways



Thank you, any questions?

http://www.opencredo.com/blog 
@OpenCredo 
@cyberbliss 
@tareq_abedrabbo

http://www.opencredo.com/blog

