
Visual Studio Code
Shipping	One	of	the	Largest	Microso3	
JavaScript	Applica8ons	

Alexandru Dima
Microso7

What do we ship?

node.js ChromiumElectron

Visual Studio Code Monaco Editor

Modern browsers

Growing the code

Growing the code

I enjoy programming in JavaScript

Pains
   Organizing a large and growing code base
   Need to come up with “compensaLng” paNerns for classes and

modules/namespaces

   Refactoring JavaScript code is difficult
   “JavaScript code rots over 0me”
   “Wri0ng JavaScript code in a large project is like carving code in stone”

   Describing APIs
   Keep the descripLon in sync with the implementaLon

TypeScript to the rescue…
  Starts with JavaScript
   All JavaScript code is TypeScript code, simply copy and paste
   All JavaScript libraries work with TypeScript

  OpLonal staLc types, classes, modules
   Structural typing and type inference
   Enable scalable applicaLon development and excellent tooling
   Zero cost: StaLc types completely disappear at run-Lme

  Ends with JavaScript
   Compiles to idiomaLc JavaScript
   Runs in any browser or host, on any OS

TypeScript Demo

Growing the code

Code OrganizaLon: Keep code structured

Our namespaces were global variables and thereby open

Namespaces have no relaLonship to the actual files on disk
Renaming files or namespaces was a pain…

We had cyclic dependencies without noLcing…

Growing Pains: Managing dependencies
  …our dependency graph was such a mess that each area had
a dependency on just about every other area.

  -- Ashamed Developer

Our source at the Lme

hNp

  90%

  10%

Module Systems to the rescue…

  AMD  CommonJS

  Supports both AMD and CommonJS with one syntax

  Sharing code between AMD and CommonJS is easy

TypeScript: First class module support

Lazy code loading

Lazy code loading

Lazy code loading

CSS dependencies
AMD loader plugins
   We implemented a css loader plugin, and TypeScript supports to

generate non-TypeScript dependencies in the JavaScript code

Performance: Bundle & Minify your Code

421

426

411

805

957

1208

294

306

291

0 500 1000 1500 2000 2500

Bundled & minified

Bundled, not minified

Not bundled, not minified

Electron Startup Load modules Open Shell, Viewlet & Editor

Minify everything (600): hNps://top.fse.guru/nodejs-a-quick-opLmizaLon-advice-7353b820c92e#.p52jv6nys

Post Module System MigraLon

  It feels like fresh showered.
Self contained modules, no
more cycles, no more globals,
clean file system structure.

  --Happy Developer

Growing the code

100% TypeScript
  MigraLon happened out of developer will

  MigraLon is code clean-up but real work…
   My velocity around 300 LOCs per hour

  Team specific rules
   No implicit ‘anys’
   No missing return types
   JSDoc comments
   No unused variables

Towards 100% TypeScript

   In JavaScript, you really are at the mercy of your
ability to spell:

   				delete	this.markers[range.statMarkerId];	

   Soon enough, I realized how inconsistent I was, the
same data was flowing around in at least 3 different
formats...

Components
  We consume:
   typescriptServices.js & typescriptServices.d.ts

  We ship:
   monaco-editor.js & monaco.d.ts
   vscode.d.ts - defines our extension API

Dependency InjecLon

  Constructor service injecLon in many places

Dependency InjecLon

Dependency InjecLon

Dependency InjecLon

Growing the code

Electron Demo

hNp://electron.atom.io/

Electron	Main	
Process	

Electron	Renderer	
Process	

Once	Electron	
is	started	

Per	Electron	
Window	

ExecuLon environments

Electron	Main	
Process	

VS	Code	Main	
Process	

Electron	Renderer	
Process	

Once	VS	Code	
is	started	

Per	VS	Code	
Window	

ExecuLon environments Check for updates
Manage extensions

Electron	Main	
Process	

VS	Code	Main	
Process	

Electron	Renderer	
Process	

VS	Code	
Extension	Host	

Once	VS	Code	
is	started	

Per	VS	Code	
Window	

ExecuLon environments Run extensions

Electron	Main	
Process	

VS	Code	Main	
Process	

Electron	Renderer	
Process	

VS	Code	
Extension	Host	

VS	Code	
Search	Service	

VS	Code	
Git	Service	

Once	VS	Code	
is	started	

Per	VS	Code	
Window	

ExecuLon environments Run a search
Run a git operaLon

Run a search
Run a git operaLon

Electron	Main	
Process	

VS	Code	Main	
Process	

Electron	Renderer	
Process	

VS	Code	
Extension	Host	

VS	Code	
Search	Service	

VS	Code	
Git	Service	

Web	
worker	

Once	VS	Code	
is	started	

Per	VS	Code	
Window	

ExecuLon environments Compute diff
Compute links

Electron	Main	
Process	

VS	Code	Main	
Process	

Electron	Renderer	
Process	

VS	Code	
Extension	Host	

VS	Code	
Search	Service	

VS	Code	
Git	Service	

Web	
worker	

Once	VS	Code	
is	started	

Per	VS	Code	
Window	

ExecuLon environments

ExecuLon environments
Electron	

Main	Process	

VS	Code	
Main	Process	

Electron	Renderer	
Process	

VS	Code	
Extension	Host	

VS	Code	
Search	Service	

VS	Code	
Git	Service	

Web	
worker	

Once	VS	Code	
is	started	

Per	VS	Code	
Window	

ES5 + node.js

ES5 + node.js + electron (main)

ES5 + node.js + electron (renderer) + browser

ES5 + web worker

Folder path RunLme Allowed to depend on

common ES5 -

node ES5 + node.js common

browser ES5 + browser common

electron-main ES5 + node.js + electron (main) common, node

electron-browser ES5 + node.js + electron (renderer) + browser common, node, browser

worker ES5 + web worker common

Demo developing vscode

Performance: Virtual scrolling

Minified code: an editor’s worst nightmare

Minified code: an editor’s worst nightmare
What’s in 42 lines?

3409 spans (~tokens) 281 spans (~tokens)

Get to know your tools: Scrolling
Performance

The Timeline shows the big picture:

But Chrome Developer Tools has a few hidden gems:

Get to know your tools: Scrolling
Performance

A few translate3d`s later…

BEFORE

AFTER

BEFORE AFTER

Resources
  VS Code hNps://github.com/Microso7/vscode

  TypeScript hNps://www.typescriptlang.org/

  Electron hNp://electron.atom.io/

  gulp-tsb hNps://github.com/jrieken/gulp-tsb

  TwiNer @code

