
@aviranm

Aviran Mordo
Head of

Microservices and DevOps
Journey at Wix.com 

www.linkedin.com/in/aviran

@aviranm

http://www.aviransplace.com

@aviranm

@aviranm

@aviranm

Wix In Numbers
 Over 86M users

 Static storage is >2Pb of data

 3 data centers + 2 clouds (Google, Amazon)

 2B HTTP requests/day

 1200 people work at Wix

@aviranm

Over 200 Microservices on Production

@aviranm

Microservices - What Does it Take

Continuous Delivery
DevOps
Circuit Breaker
Feature Flags
Throttlers
Monitoring
Testing
Message Bus
RPC
REST

SLA
Distributed Transactions
Backward / Forward Compatibility
Clustering
Conway’s law
Development / product lifecycle
Boundary
KISS
YANGI
LEAN

Do / Use
Consider / Understand

@aviranm

Microservices - What Does it Take

@aviranm

How to Get There? (Wix’s journey)

http://gpstrackit.com/wp-content/uploads/2013/11/VanishingPointwRoadSigns.jpg

@aviranm http://p1.pichost.me/i/11/1339236.jpg

About 6 years ago

@aviranm

Initial Architecture

 One database

Stateful login (Tomcat session), Ehcache, file uploads

 No consideration for performance, scalability and testing

  Intended for short-term use

Tomcat, Hibernate, custom web framework

Lighttpd
(file serving)

MySQL

DB

Wix
(Tomcat)

@aviranm

The Monolithic Giant
 One monolithic server that handled everything

 Dependency between features

 Changes in unrelated areas caused deployment of the whole system

 Failure in unrelated areas will cause system wide downtime

Lighttpd
(file serving)

MySQL

DB

Wix
(Tomcat)

@aviranm

Breaking the System Apart

https://upload.wikimedia.org/wikipedia/commons/6/67/Broken_glass.jpg

@aviranm

@aviranm

Concerns and SLA

  Many feature request

  Lower performance requirement

  Lower availability requirement

  Write intensive

Edit websites

  Not many product changes

  High performance

  High availability

  Read intensive

View sites, created by Wix editor

@aviranm

Mono-Wix

Phase 1

@aviranm

Extract Public Service

Editor service (Mono-Wix) Public service

@aviranm

Divide and Conquer

Editor service Public service

Guideline: No runtime, deployment or data dependency

@aviranm

Why 2 Monoliths? Baby Steps

Editor service Public service

Editor need fast development;
(microservices => decoupling)

Public needs stability;
microservices => scalability /resilient

@aviranm

Separation by Product Lifecycle
 Decouple architecture => Decouple teams

 Deployment independence

 Areas with frequent changes

Editor service Public service

@aviranm

Separation by Service Level
 Scale independently
 Use different data store
 Optimize data per use case (Read vs Write)
 Run on different datacenters / clouds / zones
 System resiliency (degradation of service vs. downtime)
 Faster recovery time

Editor service Public service

@aviranm
http://blogs.adobe.com/captivate/2011/03/training-adding-interactivity-to-elearning-courses-with-adobe-captivate-5.html/time-to-learn-clock

@aviranm

Service Boundary

@aviranm

Separation of Databases
 Copy data between segments

 Optimize data per use case (read vs. write intensive)

 Different data stores

Public service Editor service
Copy necessary data

@aviranm

Serialization

@aviranm

Serialization / Protocol
 Binary?
 JSON / XML / Text?
 HTTP?

Public service Editor service

@aviranm

Serialization / Protocol - Tradeoffs
 Readability?
 Performance?
 Debug?
 Tools?
 Monitoring?
 Dependency?

Public service Editor service

@aviranm

API Transport/Protocol

@aviranm

How to Expose an API
 REST?
 RPC?
 SOAP?

Public service Editor service

@aviranm

Wix’s Choices
REST
HTTP

Public service Editor service

Binary
 JSON-RPC
 HTTP

@aviranm

API Versioning

@aviranm

API Versioning

Public service Editor service
Backward compatibility

Maybe here

 API Schema /v1/v2

@aviranm

A-Synchronous

@aviranm

Which Queuing System to Use

Public service Editor service
Threads

 Kafka?
RabbitMQ?
ActiveMQ?
 ???

@aviranm

Service Discovery

@aviranm

Service Discovery

Public service Editor service
Configuration (DNS+LB)

 Zookeeper?
 Consul?
Etcd?
 Eureka?

@aviranm

Resilience

@aviranm

What does the Arrow Mean?

Public service Editor service

@aviranm

Failure Points = Network I/O

Public service Editor service

 Retry policy
 Circuit breaker
Throttlers Be careful – you may cause downtime

Retry only on idempotent operations

@aviranm

Degradation of Service

Public service Editor service

 Feature killer (Killer feature)
 Fallbacks
 Self healing

@aviranm

Testing

@aviranm

Test a Distributed System (at Wix)

Public service Editor service

 Unit Test
  Integration Test
 Server E2E
 Automation

Client

@aviranm

Distributed Logging

@aviranm

Build visibility into service

@aviranm

Ownership

@aviranm

Team Work
Microservice is owned by a team

 You build it – you run it

 No microservice is left without a clear owner

Microservice is NOT a library – it is a live production
system

@aviranm

What is the Right Size of a
Microservice?

@aviranm

The Size of a Microservice is the Size
of the Team That is Building it.

“Organizations which design systems ... are
constrained to produce designs which are copies of
the communication structures of these organizations”
Conway, Melvin

What did you Learn from Just 2 Services

●  Service boundary
●  Monitoring infrastructure
●  Serialization format
●  Synchronous communication protocol (HTTP/Binary)
●  Asynchronous (queuing infra)
●  Service SLA
●  API definition (REST/ RPC / Versioning)
●  Data separation
●  Deployment strategy
●  Testing infrastructure (integration test, e2e test)
●  Compatibility (backwards / forward)

@aviranm

Continue to Extract More Microservices

@aviranm

HTML
Editor

Flash
Editor

MSM

Private
Media

Public
Media

Editor Segment Public Segment

Premium
Services

List DB

App
Builder

App
Store

App
Market

Dashboard

Mailer

TimeZone

Public
HTML API

Public API
(Flash)

MSP

Public
Server

HTML
Renderer

HTML SEO
Renderer

Flash
Renderer

Flash SEO
Renderer

Sitemap
Renderer

Robots.txt
Renderer

User
Server

Template
Viewer

Contacts HUB Activity

Site
Members Store Mgr

Comments

Snapshoter

User Pref

Feed Me

Shout-out Hotels

PETRI

Site Pref

Dist Logger Slicer

eCom
Renderer

eCom Cart

eCom
Checkout

eCom
Catalog

eCom
Orders

Payment
Facade

Account Info

HTML API

HTML
Embeder

Blog Mobile

Mostly writes

2 Data centers

Db active-standby (preferably active-active)

Performance < 2s 99%

Serves mostly site builders

Uptime > 99.9

Mostly reads

>2 Data centers

Db active-active(-active)

Performance < 500ms 99%

Serves mostly site viewers

Uptime > 99.99

@aviranm

When to Extract a New Microservice

@aviranm

Microservice or Library?
 Do I create deployment dependency?

 What is DevOps overhead (managing
middleware) ?

 Who owns it?

 Does it have its own development lifecycle?

 Does it fit the scalability / availability concerns?

 Can a different team develop it?

I need time zone from an IP address

@aviranm

Microservice has Ops, Library is Only
Computational

@aviranm

Which Technology Stack to Use

@aviranm

Free to Chose?
Microservices gives the freedom to use a different
technology stacks.
 Enables innovation

@aviranm

Default to the Stack You Know how to
Operate.

@aviranm

Innovate on Non Critical Microservices and Take Full
Responsibility for its Operation.

@aviranm

Polyglotic System?

@aviranm

Limit your Stack
 Code reuse

 Cross cutting concerns (session, security, auditing, testing,
logging…)

 Faster system evolution

 Development velocity

@aviranm http://wallpaperbeta.com/dogs_kiss_noses_animals_hd-wallpaper-242054/

@aviranm

What else will you learn

●  Distributed transactions
●  System monitoring
●  Distributed traces
●  Tradeoff of a new microservice vs. extending an existing one
●  Deployment strategy and dependency
●  Handling cascading failures
●  Team building/splitting

@aviranm

Summary

@aviranm

Why Microservices

Scale engineering

Development Velocity

Scale system

@aviranm

Microservices is the First Post DevOps
Architecture

@aviranm

Every Microservice is a
Overhead

@aviranm

It is all about trade-off

@aviranm

Microservices Guidelines & Tradeoffs
  Each service has its own DB schema (if one is needed)

  Gain - Easy to scale microservices based on service level concerns
  Tradeoff – system complexity, performance

  Only one service should write to a specific DB table(s)

  Gain - Decoupling architecture – faster development
  Tradeoff – system complexity / performance

  May have additional read-only services that accesses the DB (not
recommended)

  Gain - Performance gain
  Tradeoff - coupling

  Services are stateless
  Gain - Easy to scale out (just add more servers)
  Tradeoff - performance / consistency

@aviranm

@aviranm

Thank You

@aviranm

Q&A
@aviranm

http://www.aviransplace.com

www.linkedin.com/in/aviranAviran Mordo
Head of Engineering

http://goo.gl/32xOTt

http://engineering.wix.com

@WixEng

