
Clemens Vasters
Architect, Azure Messaging
@clemensv

Microservices and Messaging

Clemens Vasters

@clemensv

• … owned, built, and run by an organization
• … is responsible for holding, processing, and/

or distributing particular kinds of information
within the scope of a system

• … can be built, deployed, and run
independently, meeting defined operational
objectives

• … communicates with consumers and other
services, presenting information using
conventions and/or contract assurances

• … protects itself against unwanted access,
and its information against loss

• … handles failure conditions such that failures
cannot lead to information corruption

A “Service” is software that
…

•  A system is a federation of
services and systems, aiming to
provide a composite solution for
a well-defined scope.

•  The solution scope may be
motivated by business,
technology, policy, law, culture,
or other criteria

•  A system may appear and act as
a service towards other parties.

•  Systems may share services
• Consumers may interact with

multiple systems

System

•  ... “Cloud”
•  … “Server”
•  … “ESB”
•  … “API”
•  … XML
•  … JSON
•  … REST
•  … HTTP
•  … SOAP
•  … WSDL
•  … Swagger

•  … Docker
•  … Mesos
•  … Svc Fabric
•  … Zookeeper
•  … Kubernetes
•  … SQL
•  … NoSQL
•  … MQTT
•  … AMQP
•  … Scale
•  … Reliability

•  … “Stateless”
•  … “Stateful”
•  … OAuth2
•  … OpenID
•  … X509
•  … Java
•  … Node
•  … C#
•  … OOP
•  … DDD
•  etc. pp.

“Service” does not
imply…

Principles

of Service-Based
Architecture

are independent of

implementation
choices.

About that “API Gateway” (nee ESB)

http://en.wikipedia.org/wiki/File:ESB.png

The Bus that’s a Hub

Challenges: Scale-Out, Connectivity, HA/Geo/
DR, Repository Complexity, Cost

The ESB Model promised simplification through centralization

Some API Gateway and ESB Promises

Schema and

Transformation
Repository

Routing and
Configuration

Repository

Orchestration
and Process
State Store

Orchestration

Governance

Policies

Analytics
Store

Routing Transformation

Centralized Management
of Information Routing,

Orchestration, and
Transformation

Centralized Enterprise
Repositories for

Management of Shared
Assets

Centralized Service
Governance, Monitoring,

and Analytics

Centralized Deployment
and Config of Integration
Logic through Adapters

At scale, many ESB/APIG advantages/benefits become weaknesses

The Centralization Dilemma

Schema and

Transformation
Repository

Routing and
Configuration

Repository

Orchestration
and Process
State Store

Orchestration

Governance

Policies

Analytics
Store

Routing Transformation

Scalability Challenges:
Scale-Out, Replication,

Consistency, Data
Volume

Availability Challenges:
Geo-Distribution,

Disaster Recovery, No
Downtime Upgrades

Shared Management
Challenges: Config

Versioning, Governance
Exceptions, Test,

Permissions

Deployment Challenges:
Versioning, Distribution,
Release Coordination,
Platform Dependencies

More Centralization Challenges - Ownership

Schema and

Transformation
Repository

Routing and
Configuration

Repository

Orchestration
and Process
State Store

Orchestration

Governance

Policies

Analytics
Store

Routing Transformation

Who owns this?
Who decides

what goes into
it?

Who owns this?
Who decides

what goes into
it?

Who owns
these?

Who owns
this

content?

If we’d use the ESB model on Microsoft Azure
…

What size and shape would an
ESB cluster need to have to

function at cloud-scale?

What would the adapters
translate from and to?

Are some of these services
“special” (SQL? DNS? NLB?)

and, if so, why?

Who builds, funds, owns,
supports, and operates that

central infrastructure?

Case-Study Microsoft
Azure

Compute

Storage

DNS

SQL

Networking

Service Bus Billing

Diagnostics

Portal

Identity

Access
Control

• Defining property of services is that they’re Autonomous
•  A service owns all of the state it immediately depends on and manages
•  A service owns its communication contract
•  A service can be changed, redeployed, and/or completely replaced
•  A service has a well-known set of communication paths

• Services shall have no shared state with others
•  Don't depend on or assume any common data store
•  Don't depend on any shared in-memory state

• No sideline communications between services
•  No opaque side-effects
•  All communication is explicit

• Autonomy is about agility and cross-org collaboration

Services: Autonomous Entities

• An autonomous service owns its own uptime
•  If a downstream dependency service is unavailable, it may be

acceptable to partially degrade capability, but it’s not acceptable to go
down blaming others

•  Any critical downstream dependencies need to be highly available, with
provisions for disaster recovery.

•  A service can rely on a highly-available messaging middleware layer as
a gateway to allow for variable load or servicing needs

• An autonomous service honors its contract
•  Version N honors the contract of Version N-1. Contracts are

assurances.
•  Deprecation of a contract breaks dependents; have a clear policy

Interdependencies

Why Shared Data Stores Are Bad

T

Data

T T

Data

Store data, retrieve data
token ("primary key")

Pass token, retrieve data

Assumption about shared data store

❌

Can't switch data store
independently

Data Schema V1

Data Store Decoupling Enables Evolution

Service A Service B

Data Schema V2 Data Schema V1

Clustering

Machine 1 Machine 2

Machine 3
Service P Service B

Service B

Service B Service becomes
over-stressed

Move services onto multiple machines. More
resources available to both services.

Requirement: No shared cross-service state. Service becomes
over-stressed

Split service to run on cluster of
multiple machines.

Requirement for simple case: No
cross-instance state.

LB

Clustering

Machine 1 Machine 2

Machine 3
Service P

Service B

Service B

Modern clustering infrastructure can allow for
easy and consistent state-sharing and failover

of ownership for aspects of partitioned
workloads

LB

Multi-Node Failover Clustering

Gateway Tier

HTTPS

Stateful Compute Tier

Storage Tier

Node Node Node

B1 C1 D1 H1 I1 J1 N1 O1 P1

A2 A3 B1 B2

Storage Container Storage Container

C1 D1 H1 I1 J1 N1 O1 P1

A2
A3 O2

Primaries
(Owners)

Secondaries
(Fallback)

A2
 Node

A1 G1 M1

Storage Container

A1 B1 G1 M1

O3

https://myservice.example.com

Failure of any node – in
gateway, compute, or storage

– leads to an automated
"failover" to one of at least

two secondaries.

Secondaries are continuously
updated with the all

information required to
instantly take ownership when

needed.

•  Term coined ~2002 by @PatHelland
•  “Fiefdom”: Autonomous Service
•  “Emissary”: Logic/Code

•  JavaScript on Web Pages
•  Client SDKs

•  „A service owns its contract“ can also
manifest in it owning SDKs for all relevant
platforms while keeping the wire contract
private.

• We‘ll see more of this around “edge
compute“ and “ fog“ in IoT

“Fiefdoms and Emissaries”

• Autonomy enables operational agility
•  Services and all of their implementation elements can be moved,

reconfigured, and replaced “behind the curtain”
• Autonomy enables clustering

•  Scalability: Can add more capacity and introduce partitioning/sharding
•  Reliability: Can transparently compensate for failures

• Autonomy enables reusability and adaptability
•  Services can be used from other contexts
•  Services can be replaced if contract carries forward

Autonomous Services Benefits

• Scalability
•  Scale to requirements. Up (workload growth), down (resource

constraints), out (more resources)
• Availability

•  Keep the system available as required for the solution.
• Consistency

•  Provide a view of the information held by a system that is as consistent
as needed to fulfill the solution requirements

Operational Objectives

• Reliability
•  Operate the system reliably and resilient against failures

• Predictability
•  Design to achieve predictable system performance

• Security
•  Identify and explicitly mitigate (or choose not to mitigate) security

threats.

Operational Objectives

•  Agility
•  Design the system such that defects can be corrected and new capabilities

introduced while meeting operational objectives.
•  Safety

•  Provide safety for data and systems by mitigating the risk of disasters
impacting the existing environment(s).

•  Supportability
•  Create systems to provide operational transparency for the needs of

operations and support staff
• Cost

•  Do all of the above within a set budget and striving to continually reduce that
cost.

Operational Objectives

• Service owners aim to meet operational objectives so that they can
provide operational assurances:

• What level objective achievement can and does the service owner
commercially commit to?

•  Example: Operational objective 99.99% availability/week (10 minutes max
downtime) might turn into assurance 99.95% (50 minutes max downtime)

•  Latency? Throughput? Data Loss? Disaster/Failure Recovery Time?
• What is the support lifecycle commitment for APIs and contracts?

•  How many versions? Minimum deprecation notice?

Operational Assurances

Layers, Tiers, and
Services

The implementation of a service is often organized into functional
layers, and those layers may span multiple tiers

•  We usually structure implementation (code) into
several distinct layers. Most commonly:

•  “Interface” captures information
•  Presentation Events

•  HTML, GUI, Web Services, Pipes, Queues, RPC, …
•  System Events

•  Timers, OS Wait Objects, Alerts, …

•  “Logic” filters, validates, and processes information
•  Functions, Classes, Lambdas, Actors, etc.

•  “Resources” are platform
•  Web Services, Databases, Queues, …

Layers: Code Organization

Interface

Logic

Resources

…

•  Key rationale for layers: Resilience against
changes in ambient contracts.

•  Communication and Presentation Layers
•  Lots of changes, fairly frequently

•  New UX methods and layouts, new assets
•  New contracts and schemas
•  New protocols

•  Can have multiple concurrent interfaces
•  Each change has low impact, but work adds up

•  Resource Access Layers
•  Fewer changes, rather infrequently

•  Downstream dependency services make compatibility
assurances

•  Sometimes massive impact, often wholesale rewrites
•  Goal is for core logic to be resilient against

interface changes

Rationale for Layers

HTTP API V1

HTTP API V2

Queue
API

HTML5
UX

iOS App API

Service
A

Service
B

Service
C

•  Tiers are about meeting operational objectives
•  Aspects of one service or even one layer may have

different scalability and reliability goals
•  Resource governance (I/O, CPU, Memory) needs may

differ between particular functions
•  UX tier will be more efficient and more adaptable with

client-based rendering
•  Tier boundary most often is a process boundary

•  On same machine, across machines
•  In same organization, across organizations
•  In trusted environment, across trust boundaries

•  Tier boundaries often cut through layers
•  Cuts may separate “yours” and “theirs”
•  Ex: “Your” hosted web code and “their” browser
•  Ex: “Your” data access code and “their” database

Tiers: Runtime
Organization API Gateway

Service Backend

Browser

Web Server

2 tiers, 1 layer

2 tiers, 2 layers

Example: Azure Service Bus

Gateway Tier

Backend Tier (“Broker”)

HTTP API AMQP API SBMP API

Broker

Management Tier
HTTP API

Storage Tier

Log Store

4-128 Nodes

4-128 Nodes
Compute
Service
Hosted

Storage
Service
Hosted

• Layers:
Code Management

• Tiers:
Runtime Management

• Services:
Ownership Management

Layers, Tiers, and Services

The implementation of a service consists
of one or multiple deployment tiers that

implement one or multiple layers

A “service” is a software and
operations deliverable owned

by an autonomous
organization.

How do we move information between systems?

Communication

Distribution of events
from one source to
anyone interested

Broadcast

“Radio”

Moving events
between two
endpoints.

Direct

“Phone”

Moving events via
communication

middleware

Brokered

“Mail”

Messaging is all about getting data from here to there
(Getting data back from there to here is the just same thing)

A B Transfer

Sometimes there’s a lot of “here”

A B Transfer

A A

A
A

A

A

A A

A
A

A

A

A A

A

Sometimes there’s A LOT of data

A B Transfer

Sometimes there’s a lot of “there”

Transfer B
B B

B
B

B

BB
B B

B
B

B

B

B B

B

A

Sometimes the “there” are all different

Transfer M
Q R

J
I

F

BH
K L

B
C

D

G

O P

E

A

Sometimes “there” isn’t currently paying attention

A B Transfer

Sometimes “there” is VERY BUSY

A B Transfer

Sometimes there’s trouble

A B Transfer

Client vs. Server

Client Server Connection Initiation

•  A "client" commonly decides which
"server" it wants to talk to and
when.

•  The client needs to locate the
server, choose a protocol the
server provides, and initiate a
connection.

•  The client will then typically provide
some form of authentication proof
as part of the connection
handshake

•  A "server" commonly listens for client-
initiated connections, on one or
multiple network protocol endpoints.

•  Once a client attempts to connect, the
server will typically request some
authentication proof that is then
validated for access authorization.

•  The server needs to deal with any
malformed or malicious requests

Directionality

Client Server

Simplex

Duplex

•  A simplex (or uni-directional) protocol allows flow of data in just one
direction.

•  A duplex (or bi-directional) protocol allows independent flow of data in
both directions.

•  Half-duplex only allows one of the parties to communicate at a time
•  Full-duplex allows both parties to communicate concurrently

Symmetry

Client Server

All Gestures

All Gestures

•  A protocol is symmetric when is allows all of its supported
gestures (except for connection establishment)
independent of who initiated the connection.

Multiplexing

Client Server
Connection
Session 1
Session 2

•  Multiplexing allows a singular network connection to be
used for multiple concurrent communication sessions (or
links)

•  Establishing connections can be enormously costly,
multiplexing saves the effort for further connections
between parties

Layout

Framing, Encoding, Data Layout

Framing

11001100111001010
10101011100010010
00100010100100111
10001001010001001
01001010101000100
10100110001100101
00100110101010011
00100101010100101
00010101010010010
10101010101001010

01010101001

A message or framing protocol splits the data
stream into distinct chunks that can be processed

in sequence or separately.
A frame/message header contains information
about the size, content, destination, and often
also an expression of the the sender's intent

Frame
"header"

Frame
"body"

Encoding

The encoding (or media-type) tells a message
processor how to interpret the payload data of the

message.

JSON

XML

Avro Msg
Pack

AMQ
P CSV

MPE
G Text Raw

A data layout convention can tell a processor how
to deal with structured data in a dynamic fashion

to distinguish objects or rows/columns

Metadata
Framing

11001100111001010
10101011100010010
00100010100100111
10001001010001001
01001010011001010
00100101001100101
00100110101010011
00100101010100101
00010101010010010
10101010101001010

01010101001

A message or framing protocol splits the data
stream into distinct chunks that can be processed

in sequence or separately.
A frame/message header contains information
about the size, content, destination, and often
also an expression of the the sender's intent

Frame
"header"

Frame
"body"

Metadata

Protocol Metadata
Information immediately

defined by and required by
the protocol to function

Payload Metadata
Information describing size,
encoding, and other aspects

of the payload (language)

Application Metadata
App specific instructions sent

alongside the payload for
observation by the receiver

•  Not all protocols allow for
payload and application
metadata, requiring
externally agreed
conventions establishing
mutual understanding of
message content

Transfer Assurances

•  Reliable protocols allow transfer of frames more reliably than underlying protocol layers
•  Compensating for data loss, preventing duplication, ensuring order

•  Various strategies to compensate for data loss
•  Resend on negative acknowledgment („data didn‘t get here“)
•  Resend on absence of acknowledgment
•  Send duplicates of frames

•  Common Transfer Assurances
•  "Best Effort" or "At Most Once" – no resend, not reliable
•  "At Least Once" – frame is resent until it is understood that is has been delivered at least once
•  "Exactly Once" – frame is delivered exactly once [see next]

Unreliable Connection
Reliable Transfer Session

•  In this context, a service is:
•  A reusable artifact, that can be accessed through channels, well-

defined by some interface contract
•  These communication protocols stress interoperability and location

transparency – just more or less
• A single communication mechanism does not fit all uses!

•  The very same interface may be reachable by several channels
•  The service may be located on the same machine or on the other side

of the world
• How can I reach out to a service?

•  I.e. what kind of channels can I use?

The Edge of Services

• Quality of the application and communication protocol
• Standardizing on

•  Addressing
•  Accomplished on communication protocol level

•  Framing
•  Message payload and semantics

•  Contract & schema
•  Delivery assurances
•  Security

Interoperability

• Quality of communication protocol
• Standardizing the addressing
• Several degrees of transparency:

•  No transparency at all
•  Tight coupling
•  Service is expected to run at defined location that cannot change

•  Complete transparency
•  Service might be moved anywhere
•  Change some configuration data, if at all

•  Some transparency
•  Service might be moved within a cluster of servers or local network

Location Transparency

Addressing

Link

Routable
Inter-Network

Application http://www.microsoft.com/azure

199.23.24.25

10.3.4.5

Ab:cd:de:f1

Network Address Translation (NAT) maps
globally routable addresses to addresses
only routable in a local network

Host

Interface

Interface A "host" (machine) may have multiple
interfaces (network adapters), each with one

or more independent addresses.

DNS

Stream

Datagram and Stream
Transports: UDP/TCP

DG DG DG DG DG

IP

•  A "Datagram" is a data package not
related to any other package

•  UDP/IP is the (dominant) routable
datagram protocol over IP

•  "Best effort" transfer, no
acknowledgement of delivery

•  No congestion control; large packets can
span IP frames, but whole packet is lost
when one frame is lost

IP IP IP IP IP IP

1

IP

2

IP

3

IP

4

IP

5

IP

•  A "stream" is an illusion of an unbounded
and unstructured sequence of bits/bytes
created over an ordered sequence of
packets.

•  TCP/IP is the (dominant) routable stream
protocol over IP

•  Acknowledged delivery, retransmission
on packet loss, order enforcement

•  Congestion control

• A service can be reached through at least one channel
•  The host can provide the communication mechanisms

•  This is not strictly necessary!

• A service might listen to several channels
•  Having more than one edge
•  If contract is the same

• Service itself and its edges form different layers
• The edge is the services UI!

Multi-Channelling

• Acquiring knowledge of a service while remaining independent
of that service

• Accomplished through the use of service contracts
•  Fixed contract plus payloads (e.g. HTTP/REST + JSON)
•  Variable contracts (WSDL, etc.)

• Services interact within predefined parameters
• Advantages:

•  Supports reusability
•  Enables composability
•  Supports statelessness
•  Encourages autonomy

Loose Coupling

•  Client references a Web resource using a URL
•  A representation of the resource is returned
•  The representation puts the client into some state
•  Dereferencing a hyperlink accesses another resource
•  The new representation "transfers" the client application into yet another

state

Representational State Transfer (REST)

Resource Client
http://www.exanple.com/event/advanced

Agenda
Prerequisites

Dates
Hotel info
Speakers

Cost

Response
(HTML/XML doc)

HTTP GET URL 1

HTTP response

Response
(HTML/XML doc)

HTTP GET URL 2

HTTP response

HTTP POST URL 3

HTTP response URL to submitted invoice

Invoice
(HTML/XML)

Attendee
List

Attendee

Invoice

Conference Invoicing
System

W
eb S

erver

•  HTTP 1.1 is the Application Protocol for the web
•  Simple structure, text based, ubiquitious

•  Client-initiated (asymmetric) request/response flow
•  No multiplexing
•  HTTP embodies the principles of "Representational State Transfer".

REST is not a protocol, it's the architectural foundation for the WWW.

HTTP 1.1
Patterns ReqResp
Symmetric No
Multiplexing No
Encodings Variable
Metadata Yes
Assurances -

POST	/search	HTTP/1.1	
Content-Type:	application/json	
Content-Length:	21	
	
{	"query"	:	"hello"	}		

HTTP/1.1	200	OK	
Content-Type:	application/json	
Content-Length:	xxx	
	
{	"result"	:	"…"}	

•  Web Sockets is a Stream Tunneling Protocol
•  Allows using the HTTP 1.1 port (practically only HTTPS)

for bi-directional, non-HTTP stream transfer
•  Web Sockets by itself is neither a Messaging or an Application

Protocol, as it defines no encoding or semantics for the
stream.

•  Web Sockets can tunnel AMQP, MQTT, CoAP/TCP, etc.

Web Sockets
Patterns Duplex
Symmetric No
Multiplexing No
Encodings Fixed
Metadata No
Assurances -

GET	/chat	HTTP/1.1		
Host:	server.example.com		
Upgrade:	websocket		
Connection:	Upgrade 		

HTTP/1.1	101	Switching	
Protocols		
Upgrade:	websocket		
Connection:	Upgrade	

Web
Socket

Handshak
e Data Frames

•  HTTP/2 is an Application Protocol; successor of HTTP 1.1
•  Same semantics and message model, different implementation

•  Multiplexing support, binary standard headers, header compression.
•  Uses Web Socket like upgrade for backward compatible integration

with HTTP 1.1, no WS support

•  Server-push support (server can send unsolicited replies)
•  Credit based flow control

HTTP/2
Patterns RR, OW/SC
Symmetric No
Multiplexing Yes
Encodings Variable
Metadata Yes
Assurances -

GET	/chat	HTTP/1.1		
Host:	server.example.com		
Upgrade:	h2c		
Connection:	Upgrade,	HTTP2-Settings

		

HTTP/1.1	101	Switching	Protocols		
Upgrade:	h2c		
Connection:	Upgrade	

HTTP/2

Upgrade HTTP/2 Frames

Stream

Stream

Stream

•  CoAP is a lightweight Application Protocol
•  Adapts principles of HTTP to very constrained devices
•  CoAP is based on UDP, definition of CoAP for TCP is

underway
•  Supports multicast on UDP
•  Creates a simple reliability layer over UDP using ACKs

CoAP
Constrained Application Protocol

Patterns RR
Symmetric Yes
Multiplexing No
Encodings Variable
Metadata Yes
Assurances -

UDP Route
NON

CON
ACK

GET	/res		

2.05	Content		

•  MQTT is a lightweight Publish and Subscribe
Protocol

•  Optimized for minimizing protocol overhead
•  Publish/Subscribe gestures in the protocol
•  One-way communication

MQTT
Patterns Oneway
Symmetric No
Multiplexing No
Encodings Fixed
Metadata No
Assurances AMO, ALO,

EO

MQTT Broker

Topics

PUBLISH /a
SUBSCRIBE /a

PUBLISH /a PUBLISH /b

•  AMQP is a symmetric, reliable Message Transfer Protocol
with support for multiplexing and flow control

•  Extensible, allowing for publish/subscribe and other gestures to be
layered on top of the baseline protocol

•  Supports multiple security models

AMQP
Advanced Message Queuing Protocol

Patterns Any
Symmetric Yes
Multiplexing Yes
Encodings Variable
Metadata Yes
Assurances AMO, ALO,

EO

Link
Credit

Load Leveling
Adding a message
queue allows the

business process to
handle transactions at

optimal capacity use and
without getting
overwhelmed

Spiky loads are buffered

by the queue until the
processor can handle

them

Web

Web

Web

Web

Business
Data

Business
Process

Queue

Load Leveling Pattern
Uneven transaction load distribution
is leveled out; processor proceeds at

robust pace

Offline / Batch Pattern
Work jobs can be queued up and
processed periodically. Processor

may be offline.

Load Balancing

Observing the queue
length trends allows
spinning up further

resources as needed to
handle exceptional

load.
Web

Web

Web

Web

Business
Data

Business
Process

Queue

Business
Process

Competing Consumers Pattern
Messages get distributed amongst

competing receivers in order of when they
place the receive requests

Publish/Subscribe with Topics

Notification

Topic Business
Process

Subscription

Subscription

Subscription

Tracking

Process Status Information Distribution

Audit

• Taps
•  Copies of main message flow for

auditing or diagnostics purposes

• Multicast Fan-Out
•  Distribution of messages to

multiple interested parties

• Filtering/Partitioning
•  Selective distribution of messages

based on SQL'92 rules evaluated
over message properties

•  “Enterprise” Message Brokers
•  Lots of features, transaction support, robust and durable publish/

subscribe, multi-node clustering
•  Azure Service Bus, IBM MQ, Apache ActiveMQ, RabbitMQ

• Lightweight Message Brokers
•  Constrained features, compromising on capabilities for scale or on

scale/robustness for compactness
•  Azure Queues, AWS SQS, Mosquitto

• Event Ingestors
•  Specialized brokers for telemetry capture
•  Azure Event Hubs, Apache Kafka, Kinesis

Messaging Infrastructures

“Dumb Pipes” vs. ESBs

IT departments are increasingly striving to liberate data
from disparate systems. A broad set of approaches have
been promoted under the generic term Service Oriented
Architecture (SOA). This has led to confusion about what
the term and approach actually means. We believe
businesses do not need the complex enterprise service
bus products advocated by vendors. ESBs actively
undermine the reasons for choosing the bus approach:
low latency, loose coupling, and transparency.
In contrast we have seen considerable success with
Simple Message Buses where the integration problems
are solved at the end points, rather than inside a vendor
ESB system. The most well known Simple Message Bus
approach is one based on the principles of REST and
leveraging the proven scalability of the web. However
organizations that have already invested in ESB
infrastructure can leverage the useful parts of that
infrastructure (reliable messaging etc) while still using a
Simple Message Bus approach and performing
integrations at the edges of the system.

ESBs actively undermine the reasons
for choosing the bus approach: low
latency, loose coupling, and
transparency.

In contrast we have seen considerable
success with Simple Message Buses
where the integration problems are
solved at the end points, rather than
inside a vendor ESB system.

Thoughtworks TechRadar (2010!)

Autonomy and Integration
A

B

C

D

E

F G

H

I

J

K

d

•  Business logic and edge are separate layers and potentially tiers
•  Explicit boundary
• Conceptually one single interface

•  Read/write pairs
•  Different channels, potentially paralle channels

•  Asynchronous calls
• Message driven
•  Location transparency
•  Loosely coupled
•  Separate hosts

Summary: Edge Principles

Summary: Generalized Architecture
Model

Message Broker

Service Gateway Tier

Service Logic Tier

HTTP

HTTP MQTT AMQP

AMQP P2P
MQTT PUB

(Push, LB)
(Pull)

State Management Tier

© 2016 Microsoft Corporation. All rights reserved. The text in this document is available under the Creative Commons Attribution 3.0 License, additional terms may apply. All other content contained in this
document (including, without limitation, trademarks, logos, images, etc.) are not included within the Creative Commons license grant. This document does not provide you with any legal rights to any
intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.
This document is provided "as-is." Information and views expressed in this document, including URL and other Internet Web site references, may change without notice. You bear the risk of using it. Some
examples are for illustration only and are fictitious. No real association is intended or inferred. Microsoft makes no warranties, express or implied, with respect to the information provided here.

