
Modelling Fashion @

About Wehkamp

1952 - founded by Herman Wehkamp

2006 - transition to online

2010 - all sales through Digital Channels 

Facts - 180.000 products  
 - 1.850 different brands 
 - Largest automated Warehouse  
 in Europe (Zwolle, The Netherlands) 
 - Same Day Delivery at large scale 
 - Content authority with Vloggers 
 - And much more...

Largest online Department Store in NL

Innovation is in our DNA

Digital Development at Wehkamp

Approx 80 FTE engineers

Agile Teams own the Frontend Ecosystem

Customer Facing Technology Stack  

 - Innovation, full stack development  
 - Running operations (DevOps/SRE)  
 - Microservices at a Large Scale (from parts to a
whole)  
 - Data Engineering capability 
 - Open Source, Scala, Java, Akka, Kafka  
 - Visibility in the Community 
 - And much more...  

We love Technology and Reliable Propagation of
Change

About wehkamp

Problem statement

IBM Coremetrics

recommendations web analytics

Strategy

Make for competitive advantage
⇒ Roll our own Recommendations

Buy commodity functionalities
⇒ Google Analytics Premium for analytics

Technology Strategy

Recommender Item
item

Collaborative Filtering

Item Item recommendation
Score other items based on (non) co-occurrence

● Raw co-occurrence
recommend item that co-occurs most 

 

● Jaccard
 

 
 

● Log likelihood ratio  
recommend anomalous co-occurrence; 
suppress popular items 

Shirt No Shirt ∑row

Jeans 12 73 85

51 5334 5385

∑column 63 5407 5470

Co-occurrence

Mean Reciprocal Rank

Evaluation

1 2 3 4 5

Score for session S

Total score

First item in Session S
(ItemS1) ItemS2

Recommender -
Compute

Tag - send event
 <script src="//divolte-nl.wehkamp.com/divolte.js”></script>
 <script>
 divolte.signal("pageView", {"registrationId": "12345678"});
 </script>  
</body>

Mapping - convert to avro
mapping {  

 map clientTimestamp() onto 'timestamp'  

 map location() onto 'location'  

 

 def u = parse location() to uri  

 section {  

 when u.path().equalTo('/checkout') apply {  

 map 'checkout' onto 'pageType'  

 exit()  

 }  

 map 'normal' onto 'pageType'  

 }  

}

Collect events

● Custom definable events
● Writes Avro to HDFS 

no log file parsing
● Kafka
● In flight IP2geo lookup
● Scriptable (groovy)

http://divolte.io/

http://divolte.io/

Compute

cluster computing framework

https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Software_framework

Airflow

workflow management platform

● Scheduling

● Data pipelines (DAG)

Airflow Dag definition (python)
dag = DAG('my_dag', start_date=datetime(2016, 1, 1))  

 

sets the DAG explicitly  

explicit_op = DummyOperator(task_id='op1', dag=dag)  

 

deferred DAG assignment  

deferred_op = DummyOperator(task_id='op2')  

deferred_op.dag = dag  

 

inferred DAG assignment  

inferred_op = DummyOperator(task_id='op3')  

inferred_op.set_upstream(deferred_op)

http://airflow.apache.org/

http://airflow.apache.org/

Airflow

Airflow

Operators
itemitem_spark_job = BashOperator( 
 task_id='itemitem_spark_job', 
 bash_command="""spark-submit \ 
 --master yarn-cluster \ 
 --driver-memory 4g \ 
 /artifacts/itemitem-assembly.jar \ 
 --algorithm {{ params.algorithm }} \ 
 --number_of_recommendations {{ params.nr_recommendations }} \ 
 ... 
 --cassandraKeyspace {{ params.cassandra_keyspace }} \ 
 --cassandraTable {{ params.cassandra_table }} \ 
 --saveToCassandra  
""", 
 params=SPARK_PARAMS, 
 dag=dag)

Hooks
s3 = S3Hook(S3_CONN_ID)  
s3.load_file(
 filename=LOCALTMP + finalname,  
 key='sri/' + finalname,  
 bucket_name=cfg.s3_bucket['cdw_exchange'])

Sensors
wait_for_output = HdfsSensor( 
 task_id="wait_for_output",  
 filepath="sri-{{ tomorrow_ds_nodash }}/
_SUCCESS",  
 dag=dag)

Recommender -
Serve

Serve - Microservices

● Reactive Microservices architecture

● Scalable & Resilient Infrastructure

● Blend of SaaS & Wehkamp proprietary services

● Services expose REST API’s over HTTP/JSON

● Channel Apps consume API’s

● Open for integration, internally and externally

● Support for Multi-instances e.g, countries

Microservices

Recommendation Gateway

Recommender A Recommender B Recommender C

PlanOut4J

Microservice

A/B testing

● Fault-tolerant

● Scalable
● Flexible read/write performance tuning

Storage - NoSQL

CREATE TABLE itemitem (
 product_id TEXT,
 rank INT,
 distance_score DOUBLE,
 related_product_id TEXT,
 ...
 PRIMARY KEY (product_id, rank)
) WITH CLUSTERING ORDER BY (rank ASC)

SELECT distance_score, related_product_id
FROM itemitem WHERE product_id = '$productId' LIMIT 5;

Partition Key

Top 5

Exit Intelligent Offer
● Conversion improved  

● Response times much better 

● Controlled roll-out 
A/B testing infrastructure

Exit Intelligent Offer

Tunable

New version of algorithm

Beyond Collaborative
Filtering Content based Recommendations

Visual Similarity

~ ~

Items are close by visual inspection
no (meta) data needed

Visual similarity

Convolutional Neural Networks

Convolutional Neural Network
0.442,0.193278,1.402
8, 1.4807,
0.58237, ...

Open source software library for numerical
computation using data flow graphs.

Flexible architecture, runs on one or more CPU and
GPUs on desktop, servers and mobile.
Developed by Google’s brain team.

Content based

Generate feature vectors
Use deep convolutional network trained on ImageNet data
(Large Scale Visual Recognition Challenge 2012) 

● Generates 2048 dimensional feature vector 

● Euclidean distance measures (dis)similarity

Spark: find nearby images
Compute distance between images, find closest neighbor
● Scales with N images like O(N2) 

prohibitive for large image sets

http://www.image-net.org/challenges/LSVRC/2012/

Caffe Model(s)

https://github.com/tensorflow/models/tree/master/inception

https://github.com/tensorflow/models/tree/master/inception

import tensorflow as tf
from tensorflow.python.platform import gfile

fname = “demo.jpg”

with gfile.FastGFile('data/network.pb', 'rb') as f:
 graph_def = tf.GraphDef()
 graph_def.ParseFromString(f.read())
 _ = tf.import_graph_def(graph_def, name='')

 pool3 = sess.graph.get_tensor_by_name('pool_3:0')

 image_data = gfile.FastGFile(fname, 'rb').read()

 pool3_features = sess.run(pool3, {'DecodeJpeg/contents:0': image_data})

 print pool3_features

Generating features with TF

Central idea
Vectors that are close will be close when projected to a (random) subspace.
Use “law of large numbers” to find vectors that are “probably” close - then calculate exact distance.

Say we use K random projections to {0, 1}. Then if i and j are not close, the probability of them having K identical
projections is 2-K.

Locality Sensitive Hashing

Visual recommender demo

We're hiring

