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complete race
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States with permits for self-driving cars (2014)

Source:	National	Conference	of	State	Legislatures@sprinkletoday
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States with permits for self-driving cars (2016)

Source:	National	Conference	of	State	Legislatures@sprinkletoday
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States who’ve tried self-driving cars legislation (2016)

Source:	National	Conference	of	State	Legislatures@sprinkletoday
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Vilfredo Pareto 
1848-1923

Remaining Results

Effort Required~20%

~20%

100%

@sprinkletoday
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Estimated cost of equipment only: $250,000
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Progression	of	autonomy	(in	appearance)

Monolithic	

software	

 
Sensor	

fusion

Composable	

software	

 
Sensor	

fusion

Composable	

software	

 
Composable	

perception
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Composable software

Process



21

Composable software

Process
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Composable software

Process
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Composable software
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Composable software
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Composable software
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Composable software

While	functional	behaviors	may	be	(fairly)	easy	to	test,	

nonfunctional	behaviors	rarely	compose—and	these	behaviors	

are	the	ones	that	must	be	guaranteed	for	complex	cyber-

physical	systems	that	interact	with	humans.

@sprinkletoday
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http://www.dailymail.co.uk/sciencetech/article-3281562/Tesla-autopilot-fail-videos-emerge-

Terrifying-footage-shows-happens-autonomous-driving-goes-wrong.html	

@sprinkletoday
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http://www.dailymail.co.uk/sciencetech/article-3281562/Tesla-autopilot-fail-videos-emerge-

Terrifying-footage-shows-happens-autonomous-driving-goes-wrong.html	

@sprinkletoday
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Generic Machine Learning Architecture

Training Data

Runtime AlgorithmLearning Algorithm

Labels

Runtime Data

Labels



Autonomous 
Controller

Environment User Input

Plant

Learning Algorithm
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Train	offline	with	data	

from	human	driver



Autonomous 
Controller

Environment

Plant

Learning Algorithm

User Input
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Generate	new	exception	

criteria	and	data	for	

regression	test	when	

user	intervenes

System	must	be	robust	at	runtime	in	order	to	do	this.

@sprinkletoday
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Keynote



Autonomous 
Controller

Environment

Plant

Learning Algorithm

User Input
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Generate	new	exception	

criteria	and	data	for	

regression	test	when	

user	intervenes

What’s	the	good	of	a	counterexample	for	your	test	case,	
if	irretrievable	damage	is	done	when	you	get	those	data?

@sprinkletoday
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Run	replacement	controller	(or	

replacement	sensor)	live	in	the	loop,	

but	not	hooked	up	to	the	plant.

Check	the	functional	(and	nonfunctional)	viability	of	a	

cheaper	sensor,	or	alternative	controller,	and	upload	

analysis	data	nightly.	

Proven 
Autonomous 

Controller
Environment Plant

User Input

Sensor 1

Replacement 
Autonomous 

Controller
Sensor 2 Analysis
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Mode	confusion
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Training Data

Runtime AlgorithmLearning Algorithm

Labels

Runtime Data

Labels

Unclassified	runtime	

data.	Opaque	models.	

Sensor	degradation.

Issues	of	liability.

Sensor	cost	decline.

Software	certification.

@sprinkletoday



These are big questions.

What role does research play to get better answers?
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Cyber-Physical Systems

Embedded Control

Real-Time Control


Digital Control

Distributed Control

SCADA

Cloud

Internet of Things

Sensor Networks

CPS

Computation

Communication Control

@sprinkletoday
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CPS	Design	Competition

http://cps-vo.org/group/vortex/competition	

Safe	maneuvers	of	aircraft

Water	quality	sensing

@sprinkletoday
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Different timescales*

Timescale	of	feedback/coupling

Energy	Bills
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*	Not	to	scale.	It’s	not	like	I	plotted	this	in	MATLAB	or	anything...
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Different timescales*

Timescale	of	feedback/coupling
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Only	possible	through	
automationRegulation	and/or	public	comment Ingenuity	and	

choice

@sprinkletoday
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Off

powerPressed

powerPressed
On

Booting Up
entry/readROM
do/executeROM

powerPressed

Event-triggered	(reactive)	models

Time-triggered	(functional)	models
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How much time do you have to act, as a controller?

http://www.dailymail.co.uk/sciencetech/article-3281562/Tesla-autopilot-fail-videos-emerge-

Terrifying-footage-shows-happens-autonomous-driving-goes-wrong.html	
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When computing a control decision…

State	update State	update State	update State	update

Control	input	

Calcs.	complete

Control	input	

Calcs.	complete

Control	input	

Calcs.	complete

Deadline Missed

@sprinkletoday
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Model-Predictive Control: Plan Trajectories at Runtime

Obstacle

Goal

Small	margin  
for	error

@sprinkletoday
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Easy…I’ll use an accurate vehicle model to predict the 
trajectory and avoid the obstacle.

Obstacle

Goal

Takes	longer	to	compute	control	inputs
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Easy…I’ll pick a simpler vehicle model to make it 
more likely to return control inputs in time

Obstacle

That	control	input	does	not	mean	what 
you	think	it	means.
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Competing constraints

High	vehicle	speed:	cannot	tolerate	slow	return	time.	

Low	accuracy	model:	cannot	accurately	predict	all	maneuvers.	

High	accuracy	model:	takes	longer	to	optimize.	

Obstacle
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Research: Computationally-Aware CPS

1. Consider	the	time	required	to	perform	

the	computation.	

2. Switch	between	controllers	using	

accuracy	and	time	as	switching	criteria.	

3. Explore	conditions	for	stability	and	

convergence.

Joint	work	with	Kun	Zhang	 
and	Ricardo	Sanfelice
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⇠k,t+1 = f̂q(⇠k,t, uk,t)

t 2 {k, k + 1, · · · , k +N � 1}
MPC solves the optimization problem Pq

(⇠k) at time k by using the model

ˆfq. We denote the input sequence {uq
k,k, u

q
k,k+1, · · · , u

q
k,k+N�1} by Uq

k , and

formulate the following problem:

Pq(⇠k) : argmin
Uq

k

{JN (⇠k, U
q
k ) : U

q
k ⇢ Rm}

JN (⇠k, U
q
k ) =

k+N�1X

t=k

`(⇠qk,t, u
q
k,t) + F (⇠qk,k+N )

U q⇤
k = {uq⇤

k,k, u
q⇤
k,k+1, · · · , u

q⇤
k,k+N�1}
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Problem Statement

CarSim plant

KMPC

DMPC

s

supervisor 
logic

q=0

q=1

Suppose at time k 2 {0, 1, · · · }, the vehicle state ⇠k is observed for an opti-

mization problem indexed by the predictive model in use (i.e., Pq
(⇠k)), and that

two alternative predictive models are available.

Problem: select the predictive model q such that the divergence of the state at

⇠k from the plant’s state with the same inputs is minimized.
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Kinematic/Dynamical Models
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Hybrid MPC Design

q = argmin
q
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Hybrid MPC Design

q = argmin
q

���⇠k+1 � ⇠q⇤k,k+1

���

To	make	this	decision,	we	need	to	know	two	things:

(1)	Model	mismatch (2)	Return	time	for	MPC	for	this	model
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Model Mismatch & Return Time

•  

X

Y

Predictive 
Model

YModel

XModel

Plant

YVehicle

XVehicle

Model 
Mismatch
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Time to return

�tq |q=0= 0.02

�tq |q=1= 0.05
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Uncontrollable divergence: DMPC
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Uncontrollable divergence: KMPC
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Uncontrollable divergence: KMPC with large steering

���⇠k+1 � ⇠q⇤k,k+1
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https://youtu.be/-ZDdhjZYP4A
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Photo By Twilight Invasion
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Fortunate Previous Result from [1]
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Fig. 2: The operating range for the vehicle controller in this
research is the range in which the vehicle velocity (v) versus
the steering angle (�) for the vehicle is nearly linear as shown
in the top graph for all three data sets.

vehicle should not change at all. Data analysis shows that
this velocity occurs once the comfort line has fallen to about
4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.

B. System Definition

A canonical state feedback formalism was used to define
the system for this research, with x = [�

a

v

a

]T , where the
current steering angle is �

a

and the current velocity is v

a

.
The input to the state-space system for this will be assumed
to be the new desired steering angle as defined by the output
of the Hoffman Controller or �

d

.
To do the linearization consider three points in the field

of steering angle versus velocity: the desired point (v
d

, �

d

),
the actual point (v

a

, �

a

), and the current point (v
n

, �

d

).
Figure 3 shows these three points and describes them and
the y-intercepts (�

amax

and �

dmax

) for the tangent lines for
the actual and desired points. From this we can define the
equations for the velocities as shown in (2) and (3). Where
M

a

and M

d

are the respective slopes of the tangent lines at
the actual and desired points respectively.

v
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�
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M

a

(2)

v

d

=
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d

� �

dmax

M

d

(3)

Additionally, (4) and (5) may be defined to represent the
expected values for the change in the steering angle (d�

d

)
and the acceleration (a). These changes reflect the differences
between the desired values and the actual values, with gains
(the K variables) that determine how important each value is.
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Fig. 3: This figure shows the three points from which the
controller values are derived using the normal comfort line.
These points are: the actual point that the vehicle is currently
at (v

a

, �

a

), the desired point that the vehicle should be at in
the future (v

d

, �

d

), and the translated point that the vehicle
should be at currently (v

n

, �

d

). Note that the actual point is
shown to the right of the comfort line where it should never
be while using the passenger comfort controller.

Tweaking these gains changes how quickly the vehicle reacts
to changes in steering angle as determined by the Hoffman
Controller.
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= �K
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d

(4)

a = K

d
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d

� v
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) + K
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(v
n

� v

a

) (5)

From (4) and (5) the output and state model of any given
operating point can be defined as shown in (6) and (7) .
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h

Kva
Ma

� (K
va

+ K

vd

)
i 

�

a

v

a

�
+


K

vd

M

d

�
�

d

(6)

dx =


�K

�a

0
Kva
Ma

� (K
va

+ K

vd

)

� 
�

a

v

a

�
+


�K

�d

Kvd
Md

�
�

d

(7)

IV. IMPLEMENTATION

After determining the state space equations for the general
case of any given operating region, those regions must be
determined. For simplicity’s sake, this paper will split the
comfort line into operating regions for �

a

, �

d

, and v

a

that
are all one unit long (1 m/s for velocity and 1% for steering
angles).

To simplify the problem further: (8) and (9) show that
this paper is reducing the effective number of gain values
for this controller down to two. K

d

is the gain value used
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research is the range in which the vehicle velocity (v) versus
the steering angle (�) for the vehicle is nearly linear as shown
in the top graph for all three data sets.

vehicle should not change at all. Data analysis shows that
this velocity occurs once the comfort line has fallen to about
4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.

B. System Definition

A canonical state feedback formalism was used to define
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current steering angle is �
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The input to the state-space system for this will be assumed
to be the new desired steering angle as defined by the output
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and the acceleration (a). These changes reflect the differences
between the desired values and the actual values, with gains
(the K variables) that determine how important each value is.

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

(vn, δa)
(va, δa)

(vd, δd)

(0, δamax)

(0, δdmax)

st
ee

rin
g 

an
gl

e 
(%

)

velocity (m/s)

Fig. 3: This figure shows the three points from which the
controller values are derived using the normal comfort line.
These points are: the actual point that the vehicle is currently
at (v

a

, �

a

), the desired point that the vehicle should be at in
the future (v

d

, �

d

), and the translated point that the vehicle
should be at currently (v

n

, �

d

). Note that the actual point is
shown to the right of the comfort line where it should never
be while using the passenger comfort controller.

Tweaking these gains changes how quickly the vehicle reacts
to changes in steering angle as determined by the Hoffman
Controller.
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After determining the state space equations for the general
case of any given operating region, those regions must be
determined. For simplicity’s sake, this paper will split the
comfort line into operating regions for �
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, and v
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that
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angles).
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research is the range in which the vehicle velocity (v) versus
the steering angle (�) for the vehicle is nearly linear as shown
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vehicle should not change at all. Data analysis shows that
this velocity occurs once the comfort line has fallen to about
4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.

B. System Definition

A canonical state feedback formalism was used to define
the system for this research, with x = [�

a

v

a

]T , where the
current steering angle is �

a

and the current velocity is v

a

.
The input to the state-space system for this will be assumed
to be the new desired steering angle as defined by the output
of the Hoffman Controller or �

d

.
To do the linearization consider three points in the field

of steering angle versus velocity: the desired point (v
d
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),
the actual point (v
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), and the current point (v
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Figure 3 shows these three points and describes them and
the y-intercepts (�
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and �

dmax

) for the tangent lines for
the actual and desired points. From this we can define the
equations for the velocities as shown in (2) and (3). Where
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and M
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are the respective slopes of the tangent lines at
the actual and desired points respectively.

v

n

=
�

a

� �

amax

M

a

(2)

v

d

=
�

d

� �

dmax

M

d

(3)

Additionally, (4) and (5) may be defined to represent the
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To simplify the problem further: (8) and (9) show that
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for this controller down to two. K
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is the gain value used

0 1 2 3 4 5 6 7 8 9
0

50

100

150
Best Fit Lines

St
ee

rin
g 

An
gl

e 
(%

)

Velocity (m/s)

 

 
normal
conservative
parking lot

0 1 2 3 4 5 6 7 8 9
−25

−20

−15

−10

−5

0

5
Derivatives

St
ee

rin
g 

R
at

e 
(%

/s
)

Velocity (m/s)

Fig. 2: The operating range for the vehicle controller in this
research is the range in which the vehicle velocity (v) versus
the steering angle (�) for the vehicle is nearly linear as shown
in the top graph for all three data sets.

vehicle should not change at all. Data analysis shows that
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4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.

B. System Definition

A canonical state feedback formalism was used to define
the system for this research, with x = [�

a

v

a

]T , where the
current steering angle is �

a

and the current velocity is v

a

.
The input to the state-space system for this will be assumed
to be the new desired steering angle as defined by the output
of the Hoffman Controller or �

d

.
To do the linearization consider three points in the field

of steering angle versus velocity: the desired point (v
d

, �

d

),
the actual point (v

a

, �

a

), and the current point (v
n

, �

d

).
Figure 3 shows these three points and describes them and
the y-intercepts (�

amax

and �

dmax

) for the tangent lines for
the actual and desired points. From this we can define the
equations for the velocities as shown in (2) and (3). Where
M

a

and M

d

are the respective slopes of the tangent lines at
the actual and desired points respectively.

v

n

=
�

a

� �

amax

M

a

(2)

v

d

=
�

d

� �

dmax

M

d

(3)

Additionally, (4) and (5) may be defined to represent the
expected values for the change in the steering angle (d�

d

)
and the acceleration (a). These changes reflect the differences
between the desired values and the actual values, with gains
(the K variables) that determine how important each value is.

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

(vn, δa)
(va, δa)

(vd, δd)

(0, δamax)

(0, δdmax)

st
ee

rin
g 

an
gl

e 
(%

)

velocity (m/s)

Fig. 3: This figure shows the three points from which the
controller values are derived using the normal comfort line.
These points are: the actual point that the vehicle is currently
at (v

a

, �

a

), the desired point that the vehicle should be at in
the future (v

d

, �

d

), and the translated point that the vehicle
should be at currently (v

n

, �

d

). Note that the actual point is
shown to the right of the comfort line where it should never
be while using the passenger comfort controller.

Tweaking these gains changes how quickly the vehicle reacts
to changes in steering angle as determined by the Hoffman
Controller.

d�

d

= �K

�a

�

a

� K

�d

�

d

(4)

a = K

d

(v
d

� v

a

) + K

a

(v
n

� v

a

) (5)

From (4) and (5) the output and state model of any given
operating point can be defined as shown in (6) and (7) .

y =
h

Kva
Ma

� (K
va

+ K

vd

)
i 

�

a

v

a

�
+


K

vd

M

d

�
�

d

(6)

dx =


�K

�a

0
Kva
Ma

� (K
va

+ K

vd

)

� 
�

a

v

a

�
+


�K

�d

Kvd
Md

�
�

d

(7)

IV. IMPLEMENTATION

After determining the state space equations for the general
case of any given operating region, those regions must be
determined. For simplicity’s sake, this paper will split the
comfort line into operating regions for �

a

, �

d

, and v

a

that
are all one unit long (1 m/s for velocity and 1% for steering
angles).

To simplify the problem further: (8) and (9) show that
this paper is reducing the effective number of gain values
for this controller down to two. K

d

is the gain value used

0 1 2 3 4 5 6 7 8 9
0

50

100

150
Best Fit Lines

St
ee

rin
g 

An
gl

e 
(%

)

Velocity (m/s)

 

 
normal
conservative
parking lot

0 1 2 3 4 5 6 7 8 9
−25

−20

−15

−10

−5

0

5
Derivatives

St
ee

rin
g 

R
at

e 
(%

/s
)

Velocity (m/s)

Fig. 2: The operating range for the vehicle controller in this
research is the range in which the vehicle velocity (v) versus
the steering angle (�) for the vehicle is nearly linear as shown
in the top graph for all three data sets.

vehicle should not change at all. Data analysis shows that
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maximum value.
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vehicle should not change at all. Data analysis shows that
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4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.
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Take the fit data and utilize linearization techniques
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Scatter plot with comfort controller
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Safe

R.I.P.
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Hybrid MPC Design
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Hybrid MPC Design



70

What about lots of obstacles?
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Simulation Result

•  





73

Each model converges

Numerical results of the superlevel sets of all three models suggest that each of these three 
MPCs can bound the aircraft to the origin, or at least a small ball containing the origin with a 
radius smaller than the discrete spatial steps.



Cheaper sensors may not be 
able to do it all. 

But maybe they can do a lot of 
the tasks we don’t like to do.





REDACTED
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Remaining Results

Effort Required~20%

~20%

100%

Stop	and	go	traffic

Go	for	oil	change/recharge

Freeway	travel

Autonomous	valet

Adaptive	cruise	control

Improved	traffic	flow	

Improved	fuel	consumption	

No	deaths	or	injuries	

Emergent	properties

Platooning

Cooperation	with	semi-autonomous

Semi-autonomous	with	V2V/V2I

Self-parking

**	Listed	concepts	change	in	effort 
					depending	on	available	sensors/cost@sprinkletoday
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Testbed for Research!
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Our Testbed: Full-sized Ford Escape
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Down to the wires and back again

• 2008 Ford Escape Hybrid 
• Equipped with pause/stop: 

modes for safety, emergency-
stop: normally open held closed, 
dead-man’s switch: executes e-
stop when no message received in 
time frame 

• 2 MILSPEC machines with 
dedicated handling for ROS 
whitepages, GPS/INS 

• Logging of all potentially useful 
data to TB++ HDD arrays that 
rotate out old logs if not claimed 

• Dedicated interaction to Velodyne 
sensor 

• 12-18 V DC power supply with 8 
output ports (all at same V_0)
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Featuring various hardware additions…
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Velodyne	64e		

3D	lidar	(~$80,000)
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NoVaTel	GPS/  
IMU	(~$25,000)
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With interfaces, we can model.

In Plant Out



Model
Interpretation

Model Builder

Model Interpreters

Models

DS Modeling
Environment

Application
Domain

App.
1

App.
2

App.
3

Application
Evolution
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Domain-Specific Modeling

• Create model of the system 
• Perform 

• Analysis 
• Architecture exploration 
• Simulation 

• Generate 
• Configuration 
• Code 
• Executables 

• From the same models!

Example	Domains	&	Environments:	

	-	VLSI	Layout	(e.g.,	Altera)	

	-	Engg	Drawing	(e.g.,	AutoCAD)	

	-	Physical	Modeling	(e.g.,	SolidWorks)	

	-	Signal	Processing	(e.g.,	LabVIEW)	

	-	Controls	(e.g.,	Simulink)

@sprinkletoday
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Thought Experiment: State Models
start

end
State 1

do/act2
State 2

do/act3
ev1[gu1]/act1

ev2[gu2]/act4

State
<<Atom>>

Start
<<Atom>>

End
<<Atom>>

@sprinkletoday
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Thought Experiment: State Models
start

end
State 1

do/act2
State 2

do/act3
ev1[gu1]/act1

ev2[gu2]/act4

String: doActivity

State
<<Atom>>

Start
<<Atom>>

End
<<Atom>>

String: Event
String: Guard
String: Action

Transition
<<Connection>>

@sprinkletoday
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Thought Experiment: State Models
start

end
State 1

do/act2
State 2

do/act3
ev1[gu1]/act1

ev2[gu2]/act4

String: doActivity

State
<<Atom>>

Start
<<Atom>>

End
<<Atom>>

String: Event
String: Guard
String: Action

Transition
<<Connection>>

src

dst

@sprinkletoday
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Thought Experiment: State Models
start

end
State 1

do/act2
State 2

do/act3
ev1[gu1]/act1
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State
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Start
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End
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<<Connection>>
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<<Connection>>

@sprinkletoday
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Thought Experiment: State Models
start

end
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@sprinkletoday
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Thought Experiment: State Models
start

end
State 1

do/act2
State 2

do/act3
ev1[gu1]/act1

ev2[gu2]/act4

String: doActivity

State
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Start
<<Atom>>

End
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<<Connection>>
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<<Connection>>
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Diagram
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0..*
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@sprinkletoday



Project Objects

Available Objects

Port Connections

Components

Senders Receivers

95

Example model of component interconnection

@sprinkletoday
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Example Workflow

Simulate ideal data 
source values in 

MATLAB or Simulink

Analysis

Design/
Implementation

Verification

Requirements

R1
R2

R3
etc.

Replace ideal data with 
noisy data

Replace noisy data with 
data from simulator 

(Gazebo) data

Rewrite data sources to 
acquire data directly 

from ROS

Run node directly in the 
loop from Simulink/

MATLAB

Generate code from 
Simulink/MATLAB and 
run generated code on 

simulator

Run generated code on 
actual vehicle
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With models, we extend the user base





Liz	Olson		

Adam	Johnson

Car	Following	with	ROS	and	a	cell	phone	camera.	Done	in	 
10	weeks	with	no	prior	experience.	

https://youtu.be/83rPuR159eM	

https://youtu.be/Yufd6y0ML0s	CAT	Vehicle	2015



Yesenia	Velasco	

Charles	Jawny

https://youtu.be/581VedR7NOA	

https://youtu.be/UC7ncHjx2jg		

Switched	MPC	control,	implemented	in	less	than	10	weeks	 
with	no	prior	experience.

CAT	Vehicle	2015
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Announcing the CAT Vehicle Testbed

@sprinkletoday
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Software Interface Layers

openJaus

ROS

ROS2Jaus

actuators/
sensors

Publicly Available Topics

Odometry

Twist

Pose

PointCloud

Actuators

@sprinkletoday
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CatVehicle Testbed
• ROS access to system 
• Gazebo simulator with  

• Ackermann steering 
• Lidar (Velodyne and SICK) 
• Realistic (but not “correct”) masses and dynamics 

• Published topics for odometry, path, laser scans, velocity, steering angles 
• Example Simulink Robotics System Toolbox models distributed with the source 
• Control inputs through velocity and steering angle (cmd_vel)

(BSD license)

http://cps-vo.org/group/CATVehicleTestbed
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Well,	what’s	

next?



112

Regression	testing	on	real	data	from	
real	vehicles	is	the	new	metric	for	

displacing	existing	vehicle	systems.



Architecture	for	replacement	

modules	mimics	pre-release	tests.	

The	difference	is	learning	in	the	
loop	which	may	occur	with	newer	

models	for	perception	(and	even	

control).
113

Proven 
Autonomous 

Controller
Environment Plant

User Input

Sensor 1

Replacement 
Autonomous 

Controller
Sensor 2 Analysis
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Data	curation	and	archiving,	to	

enable	disruptive	tech	to	have	

a	chance.
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Inspire	the	next	generation.	Give	opportunities	

for	them	to	realize	how	they	are	enabled	to	

change	the	world	for	the	better.
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More reading

1. S. Whitsitt and J. Sprinkle. “A passenger comfort controller for an autonomous 
ground vehicle.” In 51st IEEE Conference on Decision and Control, pages 3380–
3385, 2012. http://dx.doi.org/10.1109/CDC.2012.6426049  

2. S. Whitsitt and J. Sprinkle, “Modeling autonomous systems,” AIAA Journal of 
Aerospace Information Systems, vol. 10, no. 8, pp. 396–413, 2013. http://
dx.doi.org/10.2514/1.I010039   

3. K. Zhang, J. Sprinkle, and R. G. Sanfelice. “A hybrid model predictive controller 
for path planning and path following.” In International Conference on Cyber-
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