
Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/1

Spring Framework 5.0
Preview & Roadmap

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Juergen Hoeller
Spring Framework Lead

Pivotal

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/2

On our way to 5.0
First up: 4.3

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/3

Spring Framework 4.3

■ Last 4.x feature release!

■ 4.3 RC1: April 6th, 2016

■ 4.3 GA: June 10th, 2016

■ Extended support life until 2019

● on JDK 6, 7, 8

● on Tomcat 6, 7, 8.0, 8.5

● on WebSphere 7, 8.0, 8.5 and 9

■ Programming model refinements brought forward to JDK 6+

● DI & MVC refinements, composed annotations

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/4

The State of the Art: Component Classes

@Service

@Lazy

public class MyBookAdminService implements BookAdminService {

 // @Autowired

 public MyBookAdminService(AccountRepository repo) {

 ...

 }

 @Transactional

 public BookUpdate updateBook(Addendum addendum) {

 ...

 }

}

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/5

Configuration Classes with Autowired Constructors

@Configuration

public class MyBookAdminConfig {

 private final DataSource bookAdminDataSource;

 // @Autowired

 public MyBookAdminService(DataSource bookAdminDataSource) {

 this.bookAdminDataSource = bookAdminDataSource;

 }

 @Bean

 public BookAdminService myBookAdminService() {

 MyBookAdminService service = new MyBookAdminService();

 service.setDataSource(this.bookAdminDataSource);

 return service;

 }

}

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/6

Annotated MVC Controllers

@Controller

@CrossOrigin

public class MyRestController {

 @RequestMapping(path="/books/{id}", method=GET)

 public Book findBook(@PathVariable long id) {

 return this.bookAdminService.findBook(id);

 }

 @RequestMapping(path="/books/new", method=POST)

 public void newBook(@Valid Book book) {

 this.bookAdminService.storeBook(book);

 }

}

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/7

Precomposed Annotations for MVC Controllers

@RestController

@CrossOrigin

public class MyRestController {

 @GetMapping("/books/{id}")

 public Book findBook(@PathVariable long id) {

 return this.bookAdminService.findBook(id);

 }

 @PostMapping("/books/new")

 public void newBook(@Valid Book book) {

 this.bookAdminService.storeBook(book);

 }

}

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/8

Themes for 5.0:
JDK 9, HTTP/2, Reactive

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/9

Spring Framework 5.0

■ A new framework generation for 2017+

■ 5.0 M1: July 2016

■ 5.0 RC1: December 2016

■ Major baseline upgrade

● JDK 8+, Servlet 3.0+, JMS 2.0+, JPA 2.1+, JUnit 5

■ Key infrastructure themes

● JDK 9 and Jigsaw modules

● Servlet 4.0 and HTTP/2

● Reactive architectures

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/10

Comprehensive JDK 9 Support

■ Spring 5 schedule is close to JDK 9 schedule

● JDK 9 intends to go GA in March 2017 (but may get delayed still)

■ Jigsaw – a new module system for applications

● symbolic module names and requires/exports metadata for jar files

● currently no versioning, just structuring plus visibility enforcement

● module path as alternative to class path

■ New HTTP client and general support for HTTP/2

● superseding the outdated java.net.HttpURLConnection

● TLS extension for ALPN

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/11

Using Jigsaw with Spring (ideally)

■ Spring Framework jars coming with Jigsaw metadata out of the box

● internally declaring module-info for each jar

■ Separate module namespace, following Maven Central jar naming

● spring-context, spring-jdbc, spring-webmvc

■ An application's module-info.java can then look as follows...

 module my.app.db {

 requires java.sql;

 requires spring.jdbc;

 }

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/12

The Importance of HTTP/2 (RFC 7540)

■ Enormous benefits over HTTP 1.1 (which dates back to 1996)

● binary protocol

● TLS (SSL) everywhere

● connection multiplexing

● headers compression

● request prioritization

● push of correlated resources

■ Browsers already implement HTTP/2 over TLS

● major websites work with HTTP/2 already: Google, Twitter, etc

● We need to embrace it in Java land as well!

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/13

Spring 5 and HTTP/2

■ Servlet 4.0 – mid 2017

● enforces support for HTTP/2 in Servlet containers

● API features for stream prioritization and push resources

■ Tomcat / Jetty / Undertow

● native HTTP/2 support available in current Servlet 3.1 containers

● Tomcat 8.5 / 9.0, Jetty 9.3, Undertow 1.3

■ Spring Framework 5.0 will ship dedicated Servlet 4.0 support

● as well as dedicated support for the new JDK 9 HTTP client

● but like 4.3, it focuses on native HTTP/2 on top of Tomcat / Jetty / Undertow

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/14

The Importance of Reactive Architectures

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/15

Reactive Streams Specification

■ Focus on infrastructure interoperability

● web servers, datastore drivers

● and of course: web frameworks!

■ Minimal API

● Publisher + Subscriber/Subscription for backpressure support

● repackaged into JDK 9 as java.util.concurrent.Flow

■ Operators left up to composition libraries

● map, flatMap, take, subscribe, ...

● Reactor, RxJava, Akka Streams

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/16

Reactive Web Endpoints in Spring

■ A Spring MVC like endpoint model based on a reactive foundation

● reusing the common Spring MVC programming model style

● but accepting and returning reactive streams

■ A new HTTP endpoint engine on top of a non-blocking runtime

● Netty, Jetty, Tomcat, Undertow

● not based on the Servlet API but adaptable to a Servlet container

■ Currently developed as a public R&D project

● https://github.com/spring-projects/spring-reactive/

● to be merged into Spring Framework master in June (for 5.0 M1)

https://github.com/spring-projects/spring-reactive/

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/17

Reactive Web Controller with Reactor Flux

@Controller

public class MyReactiveWebController {

 @RequestMapping("/capitalize")

 public Flux<Person> capitalize(Flux<Person> persons) {

 return persons.map(person -> {

 person.setName(person.getName().toUpperCase());

 return person;

 }

 }

}

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/18

Reactive Web Controller with Repository Interop

@Controller

public class MyReactiveWebController {

 @Autowired

 private MyRepository<Person> repository;

 @RequestMapping("/insert")

 public Mono<Void> insert(Flux<Person> persons) {

 return this.repository.insert(persons);

 }

}

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/19

Reactive Infrastructure All Around

■ Reactive datastore drivers becoming available

● Postgres, Mongo, Couchbase

■ Reactive HTTP clients

● Netty, Jetty, OkHttp

■ Reactive Streams Commons project

● Servlet adapters: by default against Servlet 3.1 async I/O

● native container SPI for more efficiency at runtime

● currently a collaboration between Spring and Jetty / Tomcat

Unless otherwise indicated, these slides are © 2013-2016 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/20

Summary

Spring Framework 4.3 (June 2016)
Programming model refinements on JDK 6/7/8

Spring Framework 5.0 (early 2017)
JDK 8+9, Jigsaw, HTTP/2, Reactive Streams

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20

