
Microservices at Netflix Scale

First Principles, Tradeoffs, Lessons Learned
Ruslan Meshenberg
@rusmeshenberg

Microservices:
all benefits, no costs?

Netflix is the world’s leading Internet television network
with over 81 million members in over 190 countries
enjoying more than 125 million hours of TV shows and
movies per day, including original series, documentaries
and feature films.

Ruslan Meshenberg
Director, Platform Engineering

•  Runtime Systems

•  Container Runtime

•  Persistence and Databases

•  Real Time Data Infrastructure

Netflix runs on microservices

Netflix journey
to microservices

Our journey took 7 years

https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-migration

Data Center - Monolith

RDBMS

August 2008

First Principles

Buy vs. Build

●  Use or contribute to OSS technologies first

●  Only build what you have to

Services should be stateless*

●  Must not rely on sticky sessions

●  Prove by Chaos testing

*Except the Persistence / Caching layers

Scale out vs. scale up

●  If you keep scaling up, you’ll hit a limit

●  Horizontal scaling gives you a longer runway

Redundancy and Isolation
For Resiliency

●  Make more than one of anything

●  Isolate the blast radius for any given failure

Automate destructive testing

●  Simian Army

●  Started with Chaos Monkey

First Principles
In Action

Stateless services

Service A

Service B Service B Service B Service B Service B

Verify stateless

Data – from RDBMS to Cassandra

●  NoSQL at scale
●  Open Source
●  Multi-Regional
●  Multi-directional

●  Available
●  Partition Tolerance
●  Tunable Consistency*

Multi-Regional Replication

Zone	
A	

Zone	
B	

Zone	
C	

Zone	
B	

Zone	
C	

Zone	
A	

Zone	
A	

Zone	
B	

Zone	
C	

Zone	
C	

Client	
Client	

Zone	
A	

Zone	
B	

500ms

Bi-directional
Nightly compare & repair

Local Quorum
(Typical)

Region A Region B

Last, but not least - Billing

Microservices –
Benefits

Our Priorities

1. Innovation

3. Efficiency

2. Reliability

Innovation:
tight coupling doesn’t work

Develop
•  Team A
•  Team B
•  Team C
•  …

Test Release

Innovation: Loose coupling

Team A
Develop,

Test, Deploy,
Support

Team B
Develop,

Test, Deploy,
Support

Team C
Develop,

Test, Deploy,
Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

End-end
ownership

End-end ownership + velocity
Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Separation of concerns

UI Feature A Feature B Feature C

Personalization Feature D A/B Test E

Mid-tier A/B
Test F Feature H

Infrastructure Availability Scalability Security

Le
ve

ra
ge

Microservices –
Costs

Microservices
Is an org change!

Org changes are hard!

Evolving the organization

Central infrastructure
investment

Migration doesn’t happen
overnight

●  Living in the hybrid world

●  Supporting 2 tech stacks

●  Double the maintenance

●  Multi-master data replication

Microservices -
Lessons Learned

IPC is crucial
for loose coupling
●  Common language between the services

●  Establishes the contract of interaction

Caching to protect DBs

1.  Read from Cache
2.  On cache miss call service
3.  Service calls DB and responds
4.  Service updates the cache

Client Application

Client Library

EVCache Client Service Client

S S S S . . .

DB DB DB DB . . .

. . .

Request Cache

Operational visibility matters

If you can’t see it, you can’t improve it

Will your Telemetry scale?

Orient

Decide Act

Observe

Edge

ELB

Zuul

Playback

API

Middle Tier & Platform

EVCache

Cassandra

Reliability Matters
●  We strive for 4 9’s of availability

●  That leaves only 52 minutes of downtime per YEAR

●  Netflix outages lead to…

Disappointment

Outrage

Withdrawal

Humor

Cascading failures

99% availability 99% availability 99% availability

…

99%
500

 = 0.0657%

FIT
Fault-Injection

Test Framework

Microservice failure

x x

Regional fail-over

Regional fail-over

A word on containers

●  Containers change the level of encapsulation
from VM to process

●  Containers can help deliver great developer
experience

●  To run containers in production at scale…

Requires something like this:

Titus UI Titus UI

Docker
Registry

Docker
Registry

Rhea

container
container

container

docker

Titus Agent
metrics agent

Titus executor

logging agent

zfs

mesos agent

docker

Rhea Titus API

Cassandra

Titus Master

Job Management &
Scheduler

S3

Zookeeper

Docker
Registry

50

EC2 Autocaling
API

Mesos Master

Titus UI

Fenzo

VPC networking
driver

container container
container

AWS container
metadata proxy

Integration

CI/CD
Amazon VM’s

Microservices -
Resources

http://netflix.github.com

http://netflix.github.com

http://netflix.github.com

http://netflix.github.com

http://netflix.github.com

http://netflix.github.com

Wrap up

Microservices bring great value to development
velocity, availability and other dimensions

Microservices at scale require organizational
change and centralized infrastructure investment

Be aware of your situation and what works for you

Questions?

Ruslan Meshenberg
@rusmeshenberg

