
The Epistemology of Software
Engineering

Nathan Marz
@nathanmarz 1

My personal philosophies on software development

Agenda
1. Limits of human knowledge

2. Effect of the limits of knowledge on software development

3. Embracing those limits enables you to build better software

How do I know my software is correct?

How do I know a proposition is true?

Epistemology

How do I know my software is correct?

PREVIEW

You don’t

Your code is wrong

PREVIEW

How do I know a proposition is true?

You don’t

True knowledge is
unattainable

But wait... philosophy?

Fallacies

Strawman
Appeal to authority

Circular reasoning
Appeal to emotion

False dilemma
Argument to moderation

Moral highground
Ad hominem attack
Shotgun argumentation
Correlation vs causation
Equivocation
Burden of proof

Your code is wrong

Your code is literally wrong

Your code is wrong

Why do you believe your
code is correct?

Your code

Dependency 1

Dependency 2

Dependency 3

Dependency 1

Dependency 4

Dependency 5

Dependency 4

Dependency 6

Dependency 9

Dependency 7

Dependency 8

Dependency 3,000,000

Hardware

Electronics

Chemistry

Atomic physics

Quantum mechanics

I think I can safely say
that nobody understands

quantum mechanics.

Richard Feynman

Your code is wrong

Your code

...

Infinite regress

Epistemological “solutions”
1. Infinitism

2. Foundationalism

3. Coherentism

Coherentism

Foundationalism

Axioms

René Descartes

Cogito ergo sum

I think,
therefore I am

Codito ergo sum

I code,
therefore I am

Cartesian foundationalism
1. Limited axioms

2. Knowledge through deduction

Cartesian programming
1. Axioms = rules of programming language

2. Programs = deductions from those axioms

-> OutOfMemoryException

-> Hallo welt!

All the software you’ve
used has had bugs in it

Including the software
you’ve written

Induction

f(0) and (f(n) → f(n+1))
 ⇒
 ∀n≥0, f(n)

Induction

<sidenote>

David Hume

“Why is inductive reasoning valid?”

</sidenote>

Skepticism

perfect code

value to users

“My software is correct”

“My software is
sometimes correct”

How do you minimize imperfection?

Storm’s “reportError” method

(Storm is a realtime computation
system, like Hadoop but for realtime)

Storm architecture

Storm architecture

Master node (similar to Hadoop JobTracker)

Storm architecture

Used for cluster coordination

Storm architecture

Run worker processes

Storm’s “reportError” method

Used to show errors in the Storm UI

Error info is stored in Zookeeper

What happens when a user deploys code like this?

Denial-of-service on Zookeeper
and cluster goes down

Robust!

Designed input space Actual input space

Failures!
Bad performance!
Security holes!

Irrelevant!

Implement self-throttling to
avoid overloading Zookeeper

Robust!

Designed input space Actual input space

Robust!

Designed input space Actual input space

Epistemology

Trth
Truh

Trut

Tuth
Tru

Foundation of modern science

1. When viewed in an inertial reference frame,
an object either is at rest or moves at a constant

velocity, unless acted upon by an external force.

2. The acceleration of a body is directly proportional to,
and in the same direction as, the net force acting on the
body, and inversely proportional to its mass. Thus, F = ma,
where F is the net force acting on the object, m is the mass
of the object and a is the acceleration of the object.

3. When one body exerts a force on a second body, the
second body simultaneously exerts a force equal in

magnitude and opposite in direction to that of the
first body.

Newton’s laws of motion

Cambridge, we have a problem...

Orbit of Mercury problem

Einstein’s theory of relativity

 Sorry, Newton, you’ve
been PWNED:

limit
n → ∞

approximation (truth)n = truth

Science algorithm
1. Make observations

2. Find theories consistent with those observations

3. Falsify theories by making more observations

Foundationalism

Coherentism

+

Empiricism

John Locke

Occam’s Razor

Software

Use cases

Software gets messy

Refactoring

Robust!

Designed input space Actual input space

Robust!

Designed input space Actual input space

TESTING

Unit testing

Load testing

Stress testing

Fuzz testing

TDD?

Review
1. Cannot perfectly reason about software
• Infinite regress problem
• Deduction is fundamentally flawed
• Evidence shows programmers are not good at deductive reasoning

2. Best you can do is minimize wrongness
• Truth can only be approximate
• Observe/theorize/falsify cycle minimizes wrongness over time
• Testing = empiricism applied to software development
• Make programs less wrong by testing more

Does any of this matter?

YES

Embrace “your code is wrong”
to design better software

Redundancy
Fault-tolerance > Perfection

An example

Learning from Hadoop

Jobtracker

Job

Job

Job

Learning from Hadoop

Jobtracker

Job

Job

Job

Learning from Hadoop

Jobtracker

Job

Job

Job

Your code is wrong

So your processes will crash

Storm’s daemons are
process fault-tolerant

Storm

Nimbus

Topology

Topology

Topology

Storm

Nimbus

Topology

Topology

Topology

Storm

Nimbus

Topology

Topology

Topology

Storm

Nimbus

Topology

Topology

Topology

Storm

Nimbus

Topology

Topology

Topology

Robust!

Designed input space Actual input space

Robust!

Designed input space Actual input space

Reasoning is fundamentally hard

So program in ways that require
less of it

Pure function

Mutability is hard to reason about

Minimize state mutation

Functional programming

Clojure

skepticism(skepticism)

perfect software

?
?

?

?
?

?
?

?
?

?
??

?
?

?
?

?
?

? ?
???

?
?

?

?

? ?

Thank you

