The Epistemology of Software
Engineering

Nathan Marz
@nathanmarz .

My personal philosophies on software development

Agenda

1. Limits of human knowledge
2. Effect of the limits of knowledge on software development

3. Embracing those limits enables you to build better software

How do | know my software Is

HOw do | Know a proposition IS

f}oiswmofog%

How do | know my software Is

PREVIEVV

You don't

Your code IS wrong

HOw do | Know a proposition IS

PREVIEVV

You don't

True knowledge is
unattainable

But walt... philosophy*/

Strawman Moral highground

Appeal to authority Ad hominem attack
Appeal to emotion Shotgun argumentation
Circular reasoning Correlation vs causation
False dilemma Equivocation

Argument to moderation Burden of proof

Fallacies

Your code IS wrong

Your code Is literally wrong

Your code IS wrong

VWny do you believe your
code Is correct?

Dependency
Dependency 2 e o

Your code

Dependency 3

Dependency 4 \

Dependency \

Dependency 5

> Dependency 6

Dependency 7

\ / Dependency 4
Dependency 8 / \
s Al Dependency 9

. e d Dependency 3,000,000 I—

Hardware

Electronics

Chemistry

Atomic physics

Quantum mechanics

| think | can safely say
that nobody understands
gquantum mechanics.

k’ 1

Richard Feynman

Your code IS wrong

e

Your code

INfinite regress

Epistemological “solutions”

1. Infinitism
2. Foundationalism

3. Coherentism

Coherentism

Foundationalism

René Descartes

COGITO ERGO SUM

| THINK,
THEREFORE | AM

CODITO ERGO SUM

| CODE,
THEREFORE | AM

Cartesian foundationalism

1. Limited axioms

2. Knowledge through deduction

Cartesian programming

1. Axioms = rules of programming language

2. Programs = deductions from those axioms

public 1nt fib(int n) {
1f(nh==0 || n==1) return 1;
else return fib(n-1) + fib(n-2);

public BigInteger fib(BigInteger n) {
1f(n.equals(@) || n.equals(l))
return BigInteger.ONE;
else return fib(n.minus(l)) +
fib(n.minus(2));

print "Hello world!”

print "Hello world!"
-> OutOfMemoryException

print "Hello world!”
-> Hallo welt!

All the software you've
used has had bugs in It

INncluding the software
VOu've written

e
IBBRBRE

rres

LA A g
’ fogel

\ PostgreSQlL
MHS&

‘ mongoDB AN I’iCI k

R P A CHE

HEBRASE

e " & Cassandra

Induction..

Induction..

public boolean 1sSunRisingTomorrow(
boolean sunAlwaysRisen) {
1f(sunAlwaysRisen) return true;
else throw new RuntimeException("WTF??");

\ PostgreSQlL
MHS&

‘ mongoDB AN I’iCI k

R P A CHE

HEBRASE

e " & Cassandra

<sldenote>

David Hume

“‘Why Is inductive reasoning valid®?”

</sldenote>

S éepu’cism_,

value to users

“My software is
sometimes correct”

How do you minimize imperfection’?

Storm’s “reportError” method

(Storm is a realtime computation
system, like Hadoop but for realtime)

Storm architecture

Supervisor

Nimbus

Zookeeper

Supervisor

Zookeeper

Zookeeper

Supervisor

Supervisor

Supervisor

Storm architecture

Zookeeper

@ - @ S
Zookeeper

S

Supervisor

Master node (similar to Hadoop JobTracker)

Storm architecture

Supervisor

e
Supervisor
[-
Nimbus Zookeeper Supervisor
‘ _| —

—

Supervisor
L

Supervisor
—

Used for cluster coordination

Storm architecture

~ -

RuUN WOrKer Processes

Storm’s “reportError” method

Topology stats

Window - Emitted Transferred Complete latency (ms) Acked Falled
10m Os
3h Om Os

1d Oh Om Os

All time

Spouts (All time)

Executors Tasks Emitted Transferred Complete Acked Falled Last error

= latency (ms)

DBSam

; .NuliPointerException at storm.starer.s X
= utor$fn 3968% P00

2. storm. daemon. exec 10.

spout 1 1

Bolts (All time)

Id - Executors Tasks Emitted Transferred Process latency (ms) Acked Failed Last error

dumperBolt
fina
pnm

table

Show System Stats

Used to show errors in the Storm U

Error INnfo Is stored In Zookeeper

{
methodThatReturnsNull(). foo():

(Exception e) {
collector. reportError(e);

What happens when a user deploys code like this”

Denlal-of-service on Zookeeper
and cluster goes down

Failures!

Bad performance!
Security holes!

Designed input space Actual input space

Implement self-throttling to
avold overloading Zookeeper

Designed input space Actual input space

Designed input space Actual input space

f}oiswmofog%

TRTH TRUT

TRUH

TUTH
TRU

FOUNDATION OF MODERN SCIENCE

Newton’s laws of motion

1. WHEN VIEWED IN AN INERTIAL REFERENCE FRAME,
AN OBJECT EITHER IS AT REST OR MOVES AT A CONSTANT
VELOCITY, UNLESS ACTED UPON BY AN EXTERNAL FORCE.

2. THE ACCELERATION OF A BODY IS DIRECTLY PROPORTIONAL TO,
AND IN THE SAME DIRECTION AS, THE NET FORCE ACTING ON THE
BODY, AND INVERSELY PROPORTIONAL TO ITS MASS. THUS, F = MA,
WHERE F IS THE NET FORCE ACTING ON THE OBJECT, M IS THE MASS
OF THE OBJECT AND A IS THE ACCELERATION OF THE OBJECT.

3. WHEN ONE BODY EXERTS A FORCE ON A SECOND BODY, THE
SECOND BODY SIMULTANEOUSLY EXERTS A FORCE EQUAL IN
MAGNITUDE AND OPPOSITE IN DIRECTION TO THAT OF THE
FIRST BODY.

Orbit of Mercury problem

CAMBRIDGE, WE HAVE A PROBLEM...

Einstein’s theory of relativity

‘Imlt approximation (truth) = truth

N — oo

Sclence algorithm

1. Make observations

2. Find theories consistent with those observations

3. Falsify theories by making more observations

FOUNDATIONALISM

|

COHERENTISM

Tmpiricisni

John Locke

)

OCCAM’S RAZOR

Software

37

Use cases

Software gets messy

Refactoring

\

Designed input space Actual input space

Designed input space Actual input space

TESTING

2,3) =j
add(=
asse::gadd(i,gg =
assert(add(,6) =
assert(addCs.

as

>)
7)
9)
11)

UNIT TESTING
LOAD TESTING
STRESS TESTING

FUZZ TESTING

TDD?

Review

1.

2.

Cannot perfectly reason about software

nfinite regress problem
Deduction is fundamentally flawed

—vidence shows programmers are not good at deductive reasoning

Best you can do is minimize wrongness

* Truth can only be approximate

* Observe/theorize/falsify cycle minimizes wrongness over time

* JTesting = empiricism applied to software development

* Make programs less wrong by testing more

Does any of this matter”?

Embrace “your code Is wrong”
to design

REDUNDANCY
>» PERFECTION
FAULT-TOLERANCE

AN example

L earning from Hadoop

Jobtracker

L earning from Hadoop

JODMACKEr I

L earning from Hadoop

Jobtracker

Your code IS wrong

SO your processes will crash

Storm’s daemons are

Storm

Storm

Storm

Storm

Storm

Designed input space Actual input space

Designed input space Actual input space

Reasoning Is fundamentally hard

SO program in ways that require

public 1nt foo(int a, Object b) {
int ¢ = this.bar.bar(a);
1f(c>10 && this.dug.helper(b)) {
return c*2;

} else {
return cC;
}

public 1nt fib(int n) {
1f(nh==0 || n==1) return 1;
else return fib(n-1) + fib(n-2);

FPure function

Mutabllity I1s hard to reason about

state mutation

Functional programming

skepticism(skepticism)

Ihank you

