
Continuous Updating

How do you keep track
of your LIBRARIES?

How many DEPENDENCIES do
you have in your project?

Which LICENSES are
your dependencies

using?

You don’t know?

http://blog.garrytan.com/goldman-sachs-sent-a-brilliant-computer-scientist-to-jail-over-8mb-of-open-source-code-uploaded-to-an-svn-repo

Goldman Sachs sent a brilliant computer scientist to JAIL!

GPL License

http://blog.garrytan.com/goldman-sachs-sent-a-brilliant-computer-scientist-to-jail-over-8mb-of-open-source-code-uploaded-to-an-svn-repo
http://blog.garrytan.com/goldman-sachs-sent-a-brilliant-computer-scientist-to-jail-over-8mb-of-open-source-code-uploaded-to-an-svn-repo

Requirements

Analysis

Design

Coding

Testing

Accepting

15 years ago we used to work with the WATERFALL MODEL

But today we are AGILE!

Everything the Waterfall Model used
to execute in one year ...

... we nowadays execute in 2 weeks!

The way we develop software
today totally changed!

Being AGILE got us

CONTINUOUS Refactoring

CONTINUOUS Testing

CONTINUOUS Integration

CONTINUOUS Delivery

But what about
CONTINUOUS Updating ?

How do you update your
LIBRARIES ?

You don’t ?

Because you never touch a
running system, right ?

So you wanna work
with COBOL? Right?

Enjoy!

“If you can't fly then run, if
you can't run then walk, if
you can't walk then crawl,
but whatever you do you
have to keep moving
forward.”

Martin Luther King Jr.

http://www.goodreads.com/author/show/23924.Martin_Luther_King_Jr_
http://www.goodreads.com/author/show/23924.Martin_Luther_King_Jr_

Core committers don’t release
new versions just for fun!

• Bug Fixes

• Security Fixes

• Speed & Memory optimization

• New Features

They always have good reasons

How do you ensure that new
versions don’t break the system?

Semantic Versioning
Migration Paths

Continuous Testing

http://semver.org/

http://semver.org/
http://semver.org/

1.MAJOR version when you make incompatible API changes

2.MINOR version when you add functionality in a backwards-compatible manner

3.PATCH version when you make backwards-compatible bug fixes.

MAJOR.MINOR.PATCH

Always follow the
MIGRATION PATH!

Many small steps are
better than one big step

You can do SMALL MIGRATIONS on the fly.

BIG MIGRATIONS are risky and expensive.

If you miss versions, you miss migration paths, too.
And that leads to TROUBLE!

Always run your TESTS against new versions

Another reason for being current

Do you really believe
those young talents

wanna work with
COBOL?

Or other OLD SHIT?

Tracking versions is a pain!

SOFTWARE LIBRARIES
are NOT like iPhone

Apps!

100 libraries per
project in avg.

After 2 weeks the first libraries are OUT-DATED!

Developers are missing critical BUB FIXES
and important UPDATES!

Manually checking for
updates is no fun!

It cost TIME & MONEY!

NOBODY WANTS TO DO IT!

So, how do you wanna solve this
PROBLEM?

You have to
AUTOMATE!

You need a TOOL for that!

VersionEye Gemnasium GemNotifier

Languages
Java, Ruby, Node.JS,
Python, PHP, Clojure,

R, JavaScript
Ruby, Node.JS Ruby

Project Integration GitHub, URL,
FileUpload, API GitHub Single Subscribe

Changelogs in progress yes no

Security in progress yes no

Licenses yes no no

API yes no no

www.VersionEye.com
Keeps an eye on more than 250K open source libraries!

Supports 8 Languages and 7 Package Managers!

http://www.versioneye.com
http://www.versioneye.com

18%

82%

Java Open Source Libraries

Central MVN Repo Other Repos

QUESTIONS?

Contact me
on Twitter

@RobertReiz

http://www.VersionEye.com
http://www.VersionEye.com
http://www.VersionEye.com
http://www.VersionEye.com
http://www.VersionEye.com
http://www.VersionEye.com
http://www.VersionEye.com
http://www.VersionEye.com

