A PEEK INSIDE RIAK

Steve Vinoski

Basho Technologies
Cambridge, MA USA
http://basho.com

@stevevinoski
vinoski@ieee.org
http://steve.vinoski.net/

©

http://basho.com
http://basho.com
mailto:vinoski@ieee.org
mailto:vinoski@ieee.org
http://steve.vinoski.net
http://steve.vinoski.net

Riak

e A distributed highly available eventually consistent
highly scalable open source key-value database

written primarily in Erlang.

https://github.com/basho/riak

©

Friday, October 18, 13

https://github.com/basho/riak
https://github.com/basho/riak

Why Erlang?

e See Basho CTO Justin Sheehy's recent blog post on why
Basho uses Erlang:

http://basho.com/erlang-at-basho-five-years-later/

©

Friday, October 18, 13

http://basho.com/erlang-at-basho-five-years-later/
http://basho.com/erlang-at-basho-five-years-later/

Riak

« Modeled after Amazon Dynamo, see http://
docs.basho.com/riak/latest/references/dynamo/

e Also provides MapReduce, secondary indexes, and full-
text search

e Built for operational ease

©

Friday, October 18, 13

http://docs.basho.com/riak/latest/references/dynamo/
http://docs.basho.com/riak/latest/references/dynamo/
http://docs.basho.com/riak/latest/references/dynamo/
http://docs.basho.com/riak/latest/references/dynamo/

Riak Architecture

(Erlang](Ruby)(Python][PHP][Nodejs]

(Java](C/C++](.NET][Go][More]

Riak Clients .

image courtesy of Eric Redmond, "A Little Riak Book™ https:/github.com/coderoshi/little riak book/

Friday, October 18, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

[Erlang][Ruby)[Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients .
____________________________________ P4
(f—=======—====-=----==-=—-==--=--=-=< S
' I
l[Webmachine HTTP] [Riak PB]:
; |
0 [
{ Riak API ;

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Friday, October 18, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

[Erlang][Ruby][Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients .
____________________________________ P4
(f—=======—====-=----==-=—-==--=--=-=< S
' :
l[Webmachine HTTP] [Riak PB]:
l .
| |
! Riak API ; '
— ‘:
l[Riak KV] [Riak Pipe J [Yokozuna J:
l .
| |
! Riak Core :

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Friday, October 18, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

[Erlang][Ruby][Python][PHP][Nodejs]

[Java][C/C++][.NET)[Go)[More)

Riak Clients .
\ ___________________________________ P4
((m—————--——----—------—---—-—---—-—------=- J
! |
l[Webmachine HTTP J [Riak PB J:
; |
" |
{ Riak API ;
N N\ ‘;
l[Riak KV J [Riak Pipe J [Yokozuna]:
; |
" |
! Riak Core :
[Bltcaskj [eLeveIDBJ [Memory] [Multi J
L Erlang)

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Friday, October 18, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

l Erlang l[Ruby][Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients .
___________________________________ V4
--------------------------------- <)

f }
: Webmachine HTTP Rlak PB :
: I
i |
: Riak API |
NN :
: Riak KV Rlak Plpe Yokozuna :
: I
i |
{ Riak Core '
| Bitcask l'eLeveIDB l' Memory l' Multi l
Erlang)

Erlang parts

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Friday, October 18, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

\;,;, Y
G
SN
SRR

P> >
LN) foz'a

%
o
-~
)
%
>

9’

‘Q'

Friday, October 18, 13

Riak Cluster

—
M-—-ﬂ*‘"’ L — . —

Distributing Data

e Riak uses consistent hashing to spread
data across the cluster

e Minimizes remapping of keys when
number of nodes changes

e Spreads data evenly and minimizes
hotspots

©

Friday, October 18, 13

11

Consistent Hashing

* Riak uses SHA-1 as a hash function
e Treats its 160-bit value space as a ring

e Divides the ring into partitions called "virtual
nodes"” or vhodes (default 64)

e Each vnode claims a portion of the ring space

 Each physical node in the cluster hosts
multiple vnodes

©

Friday, October 18, 13

12

Hash Ring

ZléO 0

3%)160/4 2160/4

Hash Ring

2 160

z//()
) \ /a single vnode/partition

node O

node |

a ring with 32 partitions

<160
&% node 2

)
/ =

hash(<<"artist">>,<<"REM">>)

NG — T T

S 2160/ bucket key

O

I

S

O " o

S

AR R Q '
LA N

Fa T e s ‘ /

NS A

N

Fara SN
B
L .° EN A .

SR PR vf'.»'?e':«"'.
Friday, October 18, 13 14

N/R/W Values

e N = number of replicas to store (default 3, can be set
per bucket)

e R = read quorum = number of replica responses needed
for a successful read (can be specified per-request)

« W = write quorum = number of replica responses

needed for a successful write (can be specified per-
request)

©

Friday, October 18, 13

15

N/R/W Values

’ \ put(<<"artist">>,<<"REM">>)

(N=3) node O

node |

node 2

node 3

¢
L
\ ™\ preflist

for details see http://docs.basho.com/riak/latest/dev/advanced/cap-controls/

©

S
[
R

ridéy, October 18, 13

http://docs.basho.com/riak/latest/dev/advanced/cap-controls/
http://docs.basho.com/riak/latest/dev/advanced/cap-controls/

N/R/W Values

_get/put("artist", "REM",
R/W=2)

K'<<>k, Object}

sloppy guorum

riak_core_ring_manager:get_my_ring()).

x
L) L

* 4000 O

T SN
S

Friday, October 18, 13 18

>
SN
‘«'m...'
ey ¥ N

5> rp(riak_core_ring_manager:get_my_ring()).
{ok, {chstate_v2, 'dev1@127.0.0.1",

x
< o

* 4000 X

T SN
S

Friday, October 18, 13 19

Riak's Ring

[{'dev1@127.0
{'dev2@127.0
{'dev3@127.0

83
0.1
0.1

'+1211,63521635595% ¢,
*1.5,03921035021 1 ¢,
',13,63521635544}1],

Friday, October 18, 13

20

123945984,

247891968,

Riak's Ring

{64,
[{0, 'dev1@127.0.0.1'},
{22835963083295358096932575511191922182

'dev2@127.0.0.1'},
{45671926166590716193865151022383844364

Friday, October 18, 13

21

Riak's Ring

5> rp(riak_core_ring_manager:get_my_ring()).
{ok, {chstate_v2, 'dev1@127.0.0.1",
[{'dev1@127.0.0.1",{211,63521635595}},
{'dev2@127.0.0.1",{3,63521635521}},
{'dev3@127.0.0.1",{3,63521635544}}],
{64,
[{0, 'dev1@127.0.0.1'},
{22835963083295358096932575511191922182
123945984,
'dev2@127.0.0.1'},
{45671926166590716193865151022383844364
247891968,

Friday, October 18, 13 22

Ring State

e All nodes in a Riak cluster are peers, no masters or
slaves

e Nodes exchange their understanding of ring state via a
gossip protocol

Friday, October 18, 13

23

Distributed Erlang

e Erlang has distribution built in — it's required for
supporting multiple nodes for reliability

e By default Erlang nodes form a mesh, every node knows
about every other node

e Riak uses this for intra-cluster communication

©

Friday, October 18, 13

24

Distributed Erlang

e Riak lets you simulate a multi-node installment
on a single machine, nice for development

e 'make devrel” or "make stagedevrel” in a riak
repository clone (git://github.com/basho/riak.git)

e Let's assume we have nodes devl, dev2, and
dev3 running in a cluster, nothing on the 4th
node yet

e Instead of starting riak, let's start the 4th node
as just a plain distributed erlang node

©

Friday, October 18, 13

25

Distributed Erlang

$ erl -name dev4@127.0.0.1 -setcookie riak
Erlang R15B01 (erts-5.9.1) [source] [64-bit] [smp:8:8]
[async-threads:0] [kernel-poll:false]

Eshell V5.9.1 (abort with AG)
(dev4@127.0.0.1)1>

Friday, October 18, 13 26

Distributed Erlang

(dev4@127.0.0.1)1> nodes().
L]

Distributed Erlang

(dev4@127.0.0.1)2> net_adm:ping('dev1@127.0.0.1").
pong

©

Distributed Erlang

(dev4@127.0.0.1)3> nodes().
['dev1@127.0.0.1", 'dev3@127.0.0.1", 'dev2@127.0.0.1"]

©

Friday, October 18, 13

29

Distributed Erlang

$ erl -name dev4@127.0.0.1 -setcookie riak
Erlang R15B01 (erts-5.9.1) [source] [64-bit] [smp:8:8]
[async-threads:0] [kernel-poll:false]

Eshell V5.9.1 (abort with AG)

(dev4@127.0.0.1)1> nodes().

L}

(dev4@127.0.0.1)2> net_adm:ping('dev1@127.0.0.1").
pong

(dev4@127.0.0.1)3> nodes().

['dev1@127.0.0.1", "dev3i@127.0.0.1", "dev2@127.0.0.1"]

Friday, October 18, 13 30

Distributed Erlang Mesh

e Nodes talk to each other
occasionally to check
liveness

e Mesh approach makes it
easy to set up a cluster

e Currently scales up to
about 150 nodes, work

underway to make it scale

larger

©

-

-

~—
~

Friday, October 18, 13

31

Gossip

e Riak nodes are peers, there's no master

e But the ring has state, such as what vnodes each node
has claimed

e Nodes periodically send their understanding of the ring
state to other randomly chosen nodes

e Riak gossip module also provides an API for sending
ring state to specific nodes

©

Friday, October 18, 13

32

® consistent
hashing

e vector clocks

* sloppy quorums

Riak Core

Riak Core

® 00ssIp protocols

e virtual nodes

(vnodes)
¢ hinted handoff

Friday, October 18, 13

33

N/R/W Values

_,get/put("artist”™, "REM",
R/W=2)

K\\"A{ok, Object}

Hinted Handoff

e Fallback vnode holds data for unavailable primary vnode

e Fallback vnode keeps checking for availability of primary
vhode

e Once primary vnode becomes available, fallback hands
off data to it

e Fallback vnodes are started as needed, thanks to Erlang
lightweight processes

©

Friday, October 18, 13 35

Read Repair

e If a read detects a vhode with stale data, it is repaired
via asynchronous update

e« Helps implement eventual consistency

e Riak supports active anti-entropy (AAE) to actively repair
stale values

©

Friday, October 18, 13

36

Core Protocols

e Gossip, handoff, read repair, etc. all require intra-
cluster protocols

e Erlang distribution and other features help significantly
with protocol implementations

e Erlang monitors allow processes and nodes to watch
each other while interacting

e« A monitoring process/node is notified if a monitored

process/node dies, great for aborting failed
Interactions

©

Friday, October 18, 13

37

Protocols With Erlang/OTP

e Erlang’'s Open Telecom Platform (OTP) provides libraries
of standard modules

 And also behaviors: implementations of common
patterns for concurrent, distributed, fault-tolerant
Erlang apps

©

Friday, October 18, 13

38

OTP Behavior Modules

e« An OTP behavior is similar to an abstract base class in
OO terms, providing:

e 2 message handling tail-call optimized loop

e integration with underlying OTP system for code
upgrade, tracing, process management, etc.

©

Friday, October 18, 13

39

OTP Behaviors

e application: plugs into Erlang application controller
e supervisor: manages and monitors worker processes
e gen_server: server process framework

e gen_fsm: finite state machine framework

e gen_event: event handling framework

©

Friday, October 18, 13

40

Gen server

e Generic server behavior for handling messages
e Supports server-like components, distributed or not
e “Business logic” lives in app-specific callback module

e« Maintains state in a tail-call optimized receive loop

©

Friday, October 18, 13

41

Gen fsm

e Behavior supporting finite state machines (FSMs)
e Tail-call loop for maintaining state, like gen_server

e States and events handled by app-specific callback
module

e Allows events to be sent into an FSM either sync or
async

©

Friday, October 18, 13

42

Riak And Gen _*

e Riak makes heavy use of these behaviors, e.g.:
e FSMs for get and put operations

e Vnode FSM

e Gossip module is a gen_server

©

Friday, October 18, 13

43

Riak Behaviors

e riak_kv_backend: behavior for storage backends

o all storage backends have to provide the callback functions
the riak_kv_backend behavior expects

e checked at compile time
e riak_core_coverage fsm: behavior to create and execute a
plan to cover a set of vnodes, for example for secondary

index queries or listing buckets

e riak_pipe_qgcover_fsm: enqueue work on a covering set of
vhodes

©

Friday, October 18, 13 44

INTEGRATION

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little riak book/

Riak Architecture

[Erlang][Ruby][Python][PHP][Nodejs]

[Java][C/C++][.NET)[Go)[More)

Riak Clients .
\ ___________________________________ P4
((m—————--——----—------—---—-—---—-—------=- J
! |
l[Webmachine HTTP J [Riak PB J:
; |
" |
{ Riak API ;
N N\ ‘;
l[Riak KV J [Riak Pipe J [Yokozuna]:
; |
" |
! Riak Core :
[Bltcaskj [eLeveIDBJ [Memory] [Multi J
L Erlang)

Friday, October 18, 13

46

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

Erlang on top

[B.tcask] [eLeve.DB] [Memoryj [wutt]

Erlang)

C/C++ on the bottom

/""*\\

| " J |
| < s

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Friday, October 18, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

e Erlang provides the ability to dynamically link C/C++

Linking With C/C++

libraries into the VM

e« One way is through the linked-in port driver interface

e for example the VM supplies network and file system
facilities via drivers

« Another way is through Native Implemented Functions

(NIFs)

©

Friday, October 18, 13

48

Native Implemented Functions
(NIFs)

e Lets C/C++ functions operate as Erlang functions
e Erlang module serves as entry point
« When module loads it dynamically loads its NIF shared

library, overlaying its Erlang functions with C/C++
replacements

©

Friday, October 18, 13 49

Example: Eleveldb

e NIF wrapper around Google's LevelDB C++ database
e Erlang interface plugs in underneath Riak KV

e Based on riak_kv_backend storage backend behavior

©

Friday, October 18, 13

50

NIF Features

e Easy to convert arguments and return values between
C/C++ and Erlang

e Ref count binaries to avoid data copying where needed

e Portable interface to OS multithreading capabilities
(threads, mutexes, cond vars, etc.)

©

Friday, October 18, 13

51

TESTING

Eunit

e Erlang’s unit testing facility

e Support for asserting test results, grouping tests, setup
and teardown, etc.

e Used heavily in Riak

Friday, October 18, 13

53

QuickCheck

e Property-based testing product from Quviq, invented by
John Hughes (a co-inventor of Haskell)

e Create a model of the software under test
e QuickCheck runs randomly-generated tests against it

e When it finds a failure, QuickCheck automatically
shrinks the testcase to a minimum for easier debugging

e Used heavily in Riak, especially to test various protocols
and interactions

©

Friday, October 18, 13 54

MISCELLANEOUS

Memory

e Process message queues have no limits, can cause out-
of-memory conditions if a process can't keep up

e By design, VM dies if it runs out of memory

e Apps like Riak run Erlang memory monitors that help
notify about potential out-of-memory conditions

©

Friday, October 18, 13 56

Interactive Erlang Shell

e« Hard to imagine working without it

« Huge help during development and debug

Hot Code Loading

e It really works
e Use it all the time during development

e« We've also used it to load repaired code into live
production systems to help customers

©

Friday, October 18, 13

58

VM Knowledge

e Running high-scale high-load systems like Riak requires
knowledge of Erlang VM internals

e No different than working with the JVM or other
language runtimes

Friday, October 18, 13

59

For More Riak Info

e "A Little Riak Book" by Basho's Eric Redmond
http://littleriakbook.com

« Mathias Meyer's "Riak Handbook"
http://riakhandbook.com

e Eric Redmond's "Seven Databases in Seven Weeks"
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks

©

Friday, October 18, 13

60

http://littleriakbook.com
http://littleriakbook.com
http://riakhandbook.com
http://riakhandbook.com
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks

For More Riak Info

e Basho documentation
http://docs.basho.com

e Basho blog
http://basho.com/blog/

e« Basho's github repositories
https://github.com/basho
https://github.com/basho-labs

©

Friday, October 18, 13

61

http://basho.com
http://basho.com
http://basho.com/blog/
http://basho.com/blog/
https://github.com/basho
https://github.com/basho
https://github.com/basho-labs
https://github.com/basho-labs

THANKS

http://basho.com
@stevevinosk

©

http://basho.com
http://basho.com

