
Migrating to Microservices
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
 GOTO Berlin - November 2014

Typical reactions to my Netflix talks…

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010 It only works for
‘Unicorns’ like

Netflix”
– 2011

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010 It only works for
‘Unicorns’ like

Netflix”
– 2011

“We’d like to do  
that but can’t”

– 2012

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010 It only works for
‘Unicorns’ like

Netflix”
– 2011

“We’d like to do  
that but can’t”

– 2012

“We’re on our way using
Netflix OSS code”

– 2013

What I learned from my time at Netflix

What I learned from my time at Netflix

•Speed wins in the marketplace

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams
•Freedom and responsibility culture

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams
•Freedom and responsibility culture
•Don’t do your own undifferentiated heavy lifting

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams
•Freedom and responsibility culture
•Don’t do your own undifferentiated heavy lifting
•Use simple patterns automated by tooling

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams
•Freedom and responsibility culture
•Don’t do your own undifferentiated heavy lifting
•Use simple patterns automated by tooling
•Self service cloud makes impossible things instant

Cloud Adoption

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

Cloud Adoption

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

2009

Cloud Adoption

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

2009

Cloud Adoption

@adrianco’s
new job at the
intersection
of cloud and
Enterprise IT

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

20142009

This is the year that Enterprises
finally embraced cloud.

This is the year that Enterprises
finally embraced cloud.

This is the year that Enterprises
finally embraced cloud.

This is the year that Enterprises
finally embraced cloud.

What separates
incumbents from

disruptors?

“It isn't what we don't know that
gives us trouble, it's what we

know that ain't so.”
!

Will Rogers

Assumptions

Optimizations

Assumption:
Process prevents

problems

Organizations build up
slow complex “Scar

tissue” processes

"This is the IT swamp draining manual for anyone who is
neck deep in alligators.”

1984 2014

Product
Development

Processes

Observe

Orient

Decide

Act Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

Model
Hypotheses

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

Model
Hypotheses

BIG DATA

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Model
Hypotheses

BIG DATA

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery

Breaking Down the SILOs

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr

Product Team Using Monolithic Delivery
Product Team Using Monolithic Delivery

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr
Product Team Using Microservices

Product Team Using Monolithic Delivery

Product Team Using Microservices
Product Team Using Microservices

Product Team Using Monolithic Delivery

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr
Product Team Using Microservices

Product Team Using Monolithic Delivery

Platform TeamProduct Team Using Microservices
Product Team Using Microservices

Product Team Using Monolithic Delivery

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr
Product Team Using Microservices

Product Team Using Monolithic Delivery

Platform Team
A
P
I

Product Team Using Microservices
Product Team Using Microservices

Product Team Using Monolithic Delivery

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr
Product Team Using Microservices

Product Team Using Monolithic Delivery

Platform Team

DevOps is a Re-Org

A
P
I

Product Team Using Microservices
Product Team Using Microservices

Product Team Using Monolithic Delivery

Release Plan

Developer

Developer

Developer

Developer

Developer

QA Release
Integration

Ops Replace Old
With New

Release

Monolithic service updates

Works well with a small number
of developers and a single
language like php, java or ruby

Release Plan

Developer

Developer

Developer

Developer

Developer

QA Release
Integration

Ops Replace Old
With New

Release

Bugs

Monolithic service updates

Works well with a small number
of developers and a single
language like php, java or ruby

Release Plan

Developer

Developer

Developer

Developer

Developer

QA Release
Integration

Ops Replace Old
With New

Release

Bugs

Bugs

Monolithic service updates

Works well with a small number
of developers and a single
language like php, java or ruby

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Immutable microservice deployment
is faster, scales with large teams and
diverse platform components

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Immutable microservice deployment
is faster, scales with large teams and
diverse platform components

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Bugs

Immutable microservice deployment
is faster, scales with large teams and
diverse platform components

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Bugs

Deploy
Feature to
Production

Immutable microservice deployment
is faster, scales with large teams and
diverse platform components

Non-Destructive Production Updates

● “Immutable Code” Service Pattern

● Existing services are unchanged, old code remains in service

● New code deploys as a new service group

● No impact to production until traffic routing changes

● A|B Tests, Feature Flags and Version Routing control traffic

● First users in the test cell are the developer and test engineers

● A cohort of users is added looking for measurable improvement

● Finally make default for everyone, keeping old code for a while

Developing at the Speed of Docker

Developers
• Compile/Build
• Seconds

Extend container
• Package dependencies
• Seconds

PaaS deploy Container
• Docker startup
• Seconds

etc…

Developing at the Speed of Docker

Emerging market for Docker runtime orchestration options

Developers
• Compile/Build
• Seconds

Extend container
• Package dependencies
• Seconds

PaaS deploy Container
• Docker startup
• Seconds

etc…

What Happened?
Rate of change

increased

Cost and size and
risk of change

reduced

Disruptor:
Continuous Delivery
with Microservices

A Microservice Definition
!

Loosely coupled service oriented
architecture with bounded contexts

A Microservice Definition
!

Loosely coupled service oriented
architecture with bounded contexts

If every service has to be
updated at the same time
it’s not loosely coupled

A Microservice Definition
!

Loosely coupled service oriented
architecture with bounded contexts

If every service has to be
updated at the same time
it’s not loosely coupled

If you have to know too much about surrounding
services you don’t have a bounded context. See the
Domain Driven Design book by Eric Evans.

Separate Concerns with Microservices

http://en.wikipedia.org/wiki/Conway's_law

● Invert Conway’s Law – teams own service groups and backend stores

● One “verb” per single function micro-service, size doesn’t matter

● One developer independently produces a micro-service

● Each micro-service is it’s own build, avoids trunk conflicts

● Deploy in a container: Tomcat, AMI or Docker, whatever…

● Stateless business logic. Cattle, not pets.

● Stateful cached data access layer using replicated ephemeral instances

 High Availability Patterns

● Business logic isolation in stateless micro-services

● Immutable code with instant rollback

● Auto-scaled capacity and deployment updates

● Distributed across availability zones and regions

● De-normalized single function NoSQL data stores

● See over 40 NetflixOSS projects at netflix.github.com

● Get “Technical Indigestion” trying to keep up with techblog.netflix.com

US Bandwidth April 2014

US Bandwidth April 2014

ELB

US Bandwidth April 2014

ELB

OpenConnect

Microservices Development
● Client libraries

Even if you start with a raw protocol, a client side driver is the end-state
Best strategy is to own your own client libraries from the start

● Multithreading and Non-blocking Calls
Reactive model RxJava uses Observable to hide concurrency cleanly
Netty can be used to get non-blocking I/O speedup over Tomcat container

● Circuit Breakers – See Fluxcapacitor.com for code
NetflixOSS Hystrix, Turbine, Latency Monkey, Ribbon/Karyon
Also look at Finagle/Zipkin from Twitter

Microservice Datastores
● Book: Refactoring Databases

SchemaSpy to examine schema structure
Denormalization into one datasource per table or materialized view

● Polyglot Persistence
Use a mixture of database technologies, behind REST data access layers
See NetflixOSS Storage Tier as a Service HTTP (staash.com) for MySQL and C*

● CAP – Consistent or Available when Partitioned
Look at Jepsen torture tests for common systems aphyr.com/tags/jepsen
There is no such thing as a consistent distributed system, get over it…

Cloud Native
Monitoring and
Microservices

Cloud Native
● High rate of change

Code pushes can cause floods of new instances and metrics
Short baseline for alert threshold analysis – everything looks unusual

● Ephemeral Configurations
Short lifetimes make it hard to aggregate historical views
Hand tweaked monitoring tools take too much work to keep running

● Microservices with complex calling patterns
End-to-end request flow measurements are very important
Request flow visualizations get overwhelmed

Microservice Based Architectures

See http://www.slideshare.net/LappleApple/gilt-from-monolith-ruby-app-to-micro-service-scala-service-architecture

“Death Star” Architecture Diagrams

As visualized by Appdynamics, Boundary.com and Twitter internal tools

“Death Star” Architecture Diagrams

Netflix Gilt Groupe (12 of 450) Twitter

As visualized by Appdynamics, Boundary.com and Twitter internal tools

Continuous Delivery and DevOps

●Changes are smaller but more frequent

● Individual changes are more likely to be broken

●Changes are normally deployed by developers

●Feature flags are used to enable new code

● Instant detection and rollback matters much more

Whoops! I didn’t mean that!
Reverting… 

 
Not cool if it takes 5 minutes to see it failed and 5 more to see a fix  
 No-one notices if it only takes 5 seconds to detect and 5 to see a fix

NetflixOSS Hystrix/Turbine Circuit Breaker

http://techblog.netflix.com/2012/12/hystrix-dashboard-and-turbine.html

NetflixOSS Hystrix/Turbine Circuit Breaker

http://techblog.netflix.com/2012/12/hystrix-dashboard-and-turbine.html

Low Latency SaaS Based Monitors

www.vividcortex.com and www.boundary.com

Metric to display latency needs to be
less than human attention span (~10s)

Prototyping Ideas

Model and visualize microservices
!
See github.com/adrianco/spigo
Simulate Protocol Interactions in Go
!
See github.com/adrianco/d3grow
Dynamic visualization concept

Separation of Concerns  
 

Bounded Contexts

Forward Thinking

Forward Thinking

Forward Thinking

Forward Thinking

http://eugenedvorkin.com/seven-micro-services-architecture-advantages/

Any Questions?

Disclosure: some of the companies mentioned are Battery Ventures Portfolio Companies
See www.battery.com for a list of portfolio investments

● Battery Ventures http://www.battery.com
● Adrian’s Blog http://perfcap.blogspot.com
● Slideshare http://slideshare.com/adriancockcroft
!

● Monitorama Opening Keynote Portland OR - May 7th, 2014 - Video available
● GOTO Chicago Opening Keynote May 20th, 2014 - Video available
● Qcon New York – Speed and Scale - June 11th, 2014 - Video available
● Structure - Cloud Trends - San Francisco - June 19th, 2014 - Video available
● GOTO Copenhagen/Aarhus – Denmark – Sept 25th, 2014
● DevOps Enterprise Summit - San Francisco - Oct 21-23rd, 2014 #DOES14 - Videos available
● GOTO Berlin - Germany - Nov 6th, 2014
● AWS Re:Invent - Cloud Native Cost Optimization - Las Vegas - November 14th, 2014
● Dockercon Europe - Amsterdam - December 4th, 2014

