


 
DESIGN FOR A 

COMPLEX REALITY



 TRUTH



”If good design tells the truth, poor 
design tells a lie, a lie usually related 
to the getting or abusing of power.” 

!

ROBERT GRUDIN



The missing design proof



Deceptive design 
vs.  

Incorrect design 



http://darkpatterns.org/







“Agile” all the things!



The wrong tools



 A complex reality



How did we get here?





http://wikipedia.org/



http://flickr.com/photos/adactio/



Responsive design





Fragmentation of screen sizes 
is just one of many symptoms



Mobile first



Offline first





But wait, there’s more!



http://macrumors.com/



http://pcmag.com/



http://androidpolice.com/



http://androidpolice.com/



The “tweeting fridge”–problem



http://wikipedia.org/



Still more?





The upcoming generation 
will exclusively use mobile devices



The upcoming generation 
will no longer distinguish 

between online and offline



It’s a blurry mess but at least it 
plugs into the internet.



Blaming the tools



”Men have become the tools  
of their tools.” 

!

HENRY DAVID THOREAU



(WARNING: Metaphor ahead)





— And that’s pretty much it.*

(*Slight exaggeration for effect.  
Please don’t send me angry emails.)



Just kidding,  
we still have box models.





We need new tools



 
Prototyping as Tool 
for Strategic Design



”We can only see a short distance 
ahead, but we can see plenty there 

that needs to be done.” 
!

ALAN TURING



A design proof



Work across silos



Support short iterations



Involve the user



Involve designers early–on



Enable sustainable solutions, 
not just another product



The 10.000ft view



POC Business  
prototype

Production



The rules



Assumption is the root of all evil.

1



Every step of ideation must be 
followed by a step of validation.

2



Design should happen as close as 
possible to the client.

3



Constant change is not only 
anticipated but supported  

by all used tools.

4



5
Prototypes don’t have to be  

dead ends.



The expectation



Allow for high  
development speeds



Adapt to change



Increase transparency



Simplify variations



The process



Prototyping

Business prototype

Feature

Prototype

Production

Invalid feature

Validation

Integration



Workflow

Concept Design Implementation

Prototyping



A word on education



 
Prototyping using 
Web Technology





Enabling Innovation



1. Web technology (HTML, CSS, JavaScript) 

2. Meta languages (Haml, Slim, Sass, CoffeeScript) 

3. Development stack built on interpreted languages 
(Ruby, JavaScript)

Speed



1. Deployed to publicly available servers with no 
dependencies on other systems 

2. Accountability of the design 

3. Accessible through modern and widely available 
browsers / no prerequisites 

4. Higher availability of experts 

5. Lower learning curve to build the skillset up

Transparency



1. Different takes on features – support for branching and 
merging through SCM (Git) 

2. Visual variations for e.g. map skinning, app skinning or 
condition-based permutations 

3. Variations of UI features per device/client

Variations



1. Multi-screen prototypes 

2. Various input methods (touch, indirect, sensory) 

3. Communication between devices (e.g. location sharing 
via a socket server) 

4. Technology embeds

Extending the browser



1. Tangible design process 

2. Present design intent clearly or even bypass steps like 
wire framing 

3. (Very) short iteration cycles 

4. Enable user testing or validation early on 

5. Possible to utilize web analytics to track user behaviour, 
detect potential pitfalls and identify opportunities from 
data with less resources

Validation



Example



1. Flexible 

2. Extendable 

3. Modular 

4. Convention over configuration

Requirements on the stack



Example stack

Server Client Instances
WS 

Server

External inputs



Server

Server

1. Ruby 

2. Middleman 

3. Rack



Client Instances

Client instances

1. HTML 

2. CSS 

3. JavaScript 

4. SVG templating



WS Server

1. JavaScript 

2. Node.js 

3. Express 

4. Einaros/WS 

5. API/Access

WS 

Server



Components

1. Mark–up 

2. Styles 

3. Functionality



Shared resources

1. Versioned 

2. Isolated 

3. Development using Bundler 

4. Distributed as Ruby Gem via Github





Danke!
florian.plank@siili.fi / @polarblau 

www.siili.fi

http://www.siili.fi





