刀

Flash-Optimized, High-Performance NoSQL Database for All

Khosrow Afroozeh
Engineer
Aerospike

Aerospike – Built for the Age of Scale

The Gold Standard6 of top 16powered by Aerospike

(after Google, FB, from BuiltWith.com)

Extreme Speed

...we process many terabytes of data daily across our global data centers at rates in excess of one million requests per second.

Mike Nolet - CTO

Internet Scale

We are now the largest online data exchange and respond to requests 2 trillion times a month using Aerospike as our foundation.

Alex Hooshmand, co- founder & Chief Strategy Officer & SVP Operations

100% Uptime

For us, this is the **top metric** of **SUCCESS**, and that's what we've **achieved** with the Aerospike **real-time** database.

Mike Yudin - co-founder & CTO

Cost Effective

Aerospike's performance with the ability to reduce maintenance, support and hardware costs make it a truly attractive data management solution.

K. Kruglov - CTO

tapad Simple Operations

Aerospike makes upgrading simple. There's no planning required. You can take servers down and still have the system running.

Dag Liodden - co-founder & CTO

The Right Choice

Providing fast reliable access to data in real-time is not easy to do.

Aerospike has proven that our choice to buy, not build, was the right decision.

Pat DeAngelis - CTO

BIG DATA: IS IT GOING TO HAPPEN TO ME?

Every Business is Demanding "Internet Scale"

• Image: "Great Migrations in IT - Cloud, Big Data and the Race for Web-Scale IT. It's All About Business Agility." blog post by Mike Jochimsen at Emulex Labs 1.22.14.

BUT...

... I don't have that much data!

 Acquire it! It's not like the technology to manage it doesn't exist.

∢EROSPIKE-

- Data provides more insight into trends, if not behavior.
- Information behaves like mass: It attracts more information!

Typical Deployment

Last Year

- 8 core Xeon
- 24G RAM
- 400G SSD (SATA)
- 30,000 read TPS, 20,000 write TPS
- 1.5K object size / 200M objects
- 4 to 40 node clusters

This Year

- 16 core Xeon
- 128G RAM
- 2T~4T SATA / PCIe (12 s3700 / 4 P320h)
- 100,000 read TPS, 50,000 write TPS
- 3K object size / 1B objects
- 4 to 20 node cluster

REAL-TIME INTERACTIONS ARE EVERYWHERE

- Targeted Ads
- Search Retargeting
- Offer Performance Management

- Omni-channel Marketing
- Real-time Pricing
- In-store Inventory Optimization

- Infinite Scroll Recommendations
- Location-based Services
- · Mass-customized Digital Properties

- Inter-enterprise Customer Service
- Sensor Monitoring & Response
- Real-time Control Fabrics

Internet Of Things

North American RTB speeds & feeds

- Auction is limited to 30 milliseconds
 - Typically closes in 5 milliseconds
- Winners have more data, better models in 5 milliseconds

North American RTB speeds & feeds

- "Remnant" from Google, Yahoo is about 0.6 million / sec
- Facebook exchange: about 0.6 million / sec
- "other" is 0.5 million / sec
 Currently more than 2.0M / sec in North American

PERFORMANCE → PERSONALIZATION → PROFITS

AGE OF CUSTOMER = READ/WRITE PATTERN

IDENTITY

SessionIDs, Cookies, DeviceIDs, ip-Addr

ATTRIBUTES

Demographic, geographic

BEHAVIOR

- Presence, swipe, search, share...
- Channels web, phone, in-store..
- Services frequency, sophistication

SEGMENTS

Attitudes, values, lifestyle, history...

TRANSACTIONS

Payments, campaigns

BIG DATA: EMERGING ARCHITECTURE

Add-a-Layer Architecture

Minimalism Makes a Comeback

Minimalism Makes a Comeback

BIG DATA: EDGE DATABASES

Financial Services – Intraday Positions

Travel Portals

Airlines forced interstate banking

Legacy mainframe technology

Multi-company reservation and pricing

Requirement: 1M TPS allowing overhead

QOS & Real-Time Billing for Telcos

- In-switch Per HTTP request Billing
 - US Telcos: 200M subscribers, 50 metros
- In-memory use case

Social Media

Real-time bidding

Real-time Bidding Online Advertising Ecosystem

© 2012 Parks Associates

* Also referred to as agency trading desks

Real-time bidding

Modern Scale-Out Architecture

Modern Scale-Out Architecture

Flash Storage Proven and Growing

Source: IHS iSuppli Research, January 2013

Facebook and Apple bought *at least* \$200+M in FusionIO cards in 2012

(55% of \$440M revenue estimate, reported in quarterly FusionIO earnings)

Everyone wants that "facebook architecture"

Aerospike's Flash Experience

- Flash Knowledge
 - ACT benchmark http://github.com/aerospike/act
 - Read-write benchmark results back to 2011
- All clouds support flash now
 - New EC2 instances
 - Google Compute
 - Internap, Softlayer, GoGrid...

- Write durability usually not a problem with modern flash
 - Durability is high (5 "drive writes per day" for 5 years, etc)

Aerospike's Flash Experience

- Densities increasing
 - 100GB 2 years ago → 800GB today
 - SATA vs PCI-E
 - Appliances: 50T per 1U this year
- Prices still dropping: perhaps \$1/GB next year
- Intel P3700 results
 - 250K per device @ \$2.5 / GB
 - Old standard: Micron P320h 500K @ \$8 / GB
- "Wide SATA"
 - 20 SATA drives
 - LSI "pass through mode"
 - 250K+ per server

FLASH OPTIMIZED HIGH PERFORMANCE

- Direct device access
- Large Block Writes
- Indexes in DRAM
- Highly Parallelized
- · Log-structured FS "copy-on-write"
- Fast restart with shared memory

Flash Big Data Economics

SERVERS REQUIRED

Actual Customer Analysis 99% < 1ms 500K TPS 10TB Storage 2x Replication

Power (2 years) \$0.12 per kWh ave. US

Maintenance(2 years) \$3600/server

186 SERVERS

OTHER DATABASES

DRAM & HDD

180 GB (on 196 GB server) 500,000 \$8,000 \$1,488,000 0.9 kW \$352,2002

\$2,510,000

\$670,000

SSD & DRAM

2.8 TB (4 x 700 GB) 500,000 \$11,000 \$154,000 1.1 kW \$32,400 \$5042

\$236,800

Total

Storage per server

TPS per cluster

Cost per server

Server costs

Power/server

ARCHITECHTURE

Architecture – The Big Picture

- 1) No Hotspots– DHT simplifies data partitioning
- 2) Smart Client 1 hop to data, no load balancers
- 3) Shared Nothing Architecture, every node identical

- 4) Single row ACID

 synch replication in cluster
- 5) Smart Cluster, Zero Touch
 auto-failover, rebalancing,
 rack aware, rolling upgrades..
- 6) Transactions and long running tasks prioritized real-time

- 7) XDR sync replication across data centers ensures Zero Downtime
- 8) Scale linearly as data-sizes and workloads increase
- 9) Add capacity with no service interruption

ROBUST DHT TO ELIMINATE HOT SPOTS

How Data Is Distributed (Replication Factor 2)

- Every key is hashed into a 20 byte (fixed length) string using the RIPEMD160 hash function
- This hash + additional data (fixed 64 bytes) are stored in RAM in the index
- Some bits from this hash value are used to compute the partition id
- There are 4096 partitions
- Partition id maps to node id based on cluster membership

Data Distribution

Data is **distributed evenly** across nodes in a cluster using the Aerospike Smart Partitions[™] algorithm.

- Even distribution of
 - Partitions across nodes
 - Records across Partitions
 - Data across Flash devices
- Primary and Replica Partitions

INTELLIGENT CLIENT TO MAKE APPS SIMPLER

Shield Applications from the Complexity of the Cluster

- Implements Aerospike API
 - Optimistic row locking
 - Optimized binary protocol
- Cluster tracking
 - Learns about cluster changes, partition map
- Transaction semantics
 - Global Transaction ID
 - Retransmit and timeout
- Linear scale
 - No extra hop
 - No load balancers

Single Server YCSB Performance

YCSB Benchmark Test 3, Fig 5: Updated with Aerospike 3 numbers

Amazon EC2 results

Amazon EC2 results

Number of Nodes vs TPS

Amazon EC2 results

\$Imonth vs TPS

IMPLEMENTATION MATTERS

Implementation Matters

Optimize Key-Value code paths

- No hot spots (e.g., robust DHT)
- Scales up easily (e.g., easy to size)
- Avoids points of failure (e.g., single node type)
- Binary protocol

2. Code in C

- Read() / Write() / Linux AIO (don't trust a library)
- Multithreading
- Direct device access

Memory allocation matters

- Stack-based allocators
- Own stack allocator
- JEMalloc for pools (less memory fragmentation, SMP optimized)

Implementation Matters

4. Masters in a shared nothing system

- Fast cluster organization
- Fast transaction capabilities
- Can be CP or AP and resolve data accurately

Client libraries are hard (so we do it for you)

- Fast stable connection pools are hard
- API design matters
- Slow languages need Aerospike more

Hot Analytics - Signal in Noise

ANALYTICS - TECHNOLOGIES

Hadoop

Large and capable, but not fast.

http://www.aerospike.com/community/labs/

Complex Event Processing (CEP)

Key Challenges

- Handle extremely high rates of read/write transactions with concurrent real-time analytics
- Avoid hot spots
 - On a node
 - An index
 - A key
- Pre-qualify data to be processed in Map Reduce
- Maximize parallelism
- Minimize programmer complexity
- ► In **Real-time**

Queries + User Defined Functions = Real-Time Analytics

User Defined Functions (UDFs) for real-time analytics and aggregations SECONDARY KEY LOOKUP PRIMARY KEY LOOKUP RECORD ... RECORD

STREAM AGGREGATIONS

(INDEXED MAP-REDUCE)

Pipe Query results through UDFs

Filter, Transform, Aggregate.. Map, Reduce

Conceptual Stream Processing

- Output of a query is a Stream
- Stream flows through
 - Filter
 - Mapper

Hot Analytics Schario – Airline Late Flights

Data

- Airline flights in the USA January 2012
- **1**,050,000 flight records

Task

- On a specific date
 - Which Airline had late flights?
 - How many flights?
 - How many were late?
 - Percentage late flights?

Performance Requirements

- Results in < 1 Sec
- No impact on production transaction performance (300K TPS)

GitHub Repo - https://github.com/aerospike/flights-analytics

Operations (300k TPS) + Analytics (Indexed Map/Reduce)

- Java App calculates% of late flights by Airline
- 300k TPS Operations + Process 1 Million records
 - Indexed Map/Reduce
 - Aggregations
 - Distributed Queries + UDF
- Runs in 0.5 seconds

▼ [> movie-analytics [movie-analytics master]

aerospike-load-1.1-jar-with-dependencies.jar

README.md

most_reviewed.py

moviereview.json

moviedata.csv

▶ @ lua_files

```
7 3 6 6 6 6 6 A
                                                               Q. Quick Access
                                                                                    📑 👺 Java EE 🕸 Debug
   lightsAnalytics.java 🛭 📗 xaa
             * create time stamps for query from
             * the start date and end date
            SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
            Date startDate = sdf.parse("2012-01-15");
            long startTimeStamp = startDate.getTime() / 1000;
            Date endDate = sdf.parse("2012-01-15");
            long endTimeStamp = endDate.getTime() / 1000;
             * build the query
            Statement stmt = new Statement();
            stat setNomesnore(this nomesnore)
                                                                                                   9 P
   tarkers 🗀 Properties 🚜 Servers 🚻 Data Source Explorer 😘 Snippets 📮 Console 🕮
   minated > FlightsAnalytics run [Java Application] /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home/bin/java (May
   EBUG FlightsAnalytics - Host: 192.168.180.147
   EBUG FlightsAnalytics - Port: 3000
   BUG FlightsAnalytics - Namespace: test
    INFO FlightsAnalytics - registered UDF
    INFO FlightsAnalytics - built query
    INFO FlightsAnalytics - executed aggregation
          FlightsAnalytics - Airlines with late flights:
    INFO FlightsAnalytics - AS:
                                    1841
                                             482 21%
          FlightsAnalytics
                            - US:
                                    1779
    INFO FlightsAnalytics - 86:
    INFO FlightsAnalytics
                            - HA:
                                     426
          FlightsAnalytics
3155 INFO
          FlightsAnalytics - EV:
3155 INFO FlightsAnalytics
                            MQ:
          FlightsAnalytics
                                            1234 22%
3156 INFO
          FlightsAnalytics
                            - NN:
          FlightsAnalytics
                            - DL:
                                    2654
          FlightsAnalytics
3156 INFO
          FlightsAnalytics
                            - AA:
                                    4200
                                            1334 31%
3156 INFO FlightsAnalytics
          FlightsAnglytics

    FL:

                                             200 16%
```

le/aggregation/FlightsAnalytics.java – Eclipse – /Users/peter/Documents/workspace-analytics

Key-Value with Analytics

Add basic analytics capability to improve measurements and metrics for your highest velocity data

SUMMARY

- Support for Popular Languages and Tools
 - AQL and Aerospike Client in C, Java, C#, Go, Node, Ruby, Python, ...
- Complex Data Types
 - Nested documents (map, list, string, integer)
 - Large (Stack, Set, List) Objects
- Queries
 - Single Record
 - Batch multi-record lookups
 - Equality and Range
 - Aggregations and Map-Reduce

- User Defined Functions
 - In-DB processing
- Aggregation Framework
 - UDF Pipeline
 - MapReduce
- Time Series Queries
 - Just 2 IOPs for most r/w (independent of object size)

Aerospike: The Trusted In-Memory NoSQL

Performance

- Over 20 trillion transactions per month
- 99% of transactions < 2 ms
- 150K TPS per server

Reliability

- 50 customers; zero down-time
- Immediate Consistency
- Rapid Failover; Data Center Replication

Scalability

- Billions of Internet users
- Clustered Software
- Maintenance without downtime
- Scale up & scale out

Price/Performance

- Makes impossible projects affordable
- Flash-optimized
- 1/10 the servers required

Open Source

Straight Ahead

Speed + Scale + Reliability =

∢EROSPIKE

The power of Free

Questions and Answers

@parshua

khosrow@aerospike.com