—) >Real Logic

ACCELERATING SOFTWARE

Aeron
High-Performance
Open Source
Message Transport

Martin Thompson - @mjpit777

I A

. Why build another Product?

What Features are really needed?
How does one Design for this?
What did we Ledrn on the way?
What's the Roadmap?

1. Why build another
product?

Not Invented Here!

There’s a story here...

Gateway Gateway Gateway Gateway | Gateway Gateway

Matching or Matching or

Trading Trading
Engine Engine

But many others could benefit

Feature Bloat & Complexity

Not Fast Enough

Low-Latency is key

"

We are in a new world

Multi-core, Multi-socket,
Cloud...

We are in a new world

Multi-core, Multi-socket,
Cloud...

UDP, IPC, InfiniBand,
RDMA, PCl-e

Aeron is frying a new approach

The Team

Todd Montgomery Richard Warburton

F B

Martin Thompson

2. What features
are really needed?

Messaging

Publishers Channel Subscribers

Y
5
\
\ A
X
¥
\Y
5N

Channel

A library, not a framework, on
which other abstractions and
applications can be built

Composable Design

OSl layer 4 Transport for
message oriented sfreams

OSI Layer 4 (Transport) Services

Connection Oriented Communication
Reliability

Flow Control

Congestion Avoidance/Control
Multiplexing

ko bdb-

Connection Oriented Communication

word order

Reliability

Flow Contirol

Congestion Avoidance/Control

Multiplexing

Multi-Everything World!

Multi-Everything World

Publishers Subsribers

Channel

Endpoints that scale

3. How does one
design for this?

Design Principles

0O NO O A WN =

. Garbage free in steady state running
. Smart Batching in the message path
. Wait-free algos in the message path

Non-blocking IO in the message path

. No exceptional cases in message path
. Apply the Single Writer Principle

Prefer unshared state

. Avoid unnecessary data copies

It's all about 3 things

It's all about 3 things

1. System Architecture

It's all about 3 things

1. System Architecture
2. Data Structures

It's all about 3 things

1. System Architecture
2. Data Structures
3. Protocols of Interaction

Architecture

Publisher Subscriber

—

—

Subscriber Publisher

— |IPC Log Buffer

Architecture

Publisher) Subscriber
——)| Sender Receiver %

M Receiver Sender —
Subscriber Publisher

— |IPC Log Buffer
Media (UDP, InfiniBand, PCI-e 3.0)

Architecture

) Subscriber
Receiver %

|

Publisher
— Sender
Admin I
P » Conductor
Events I
Receiver

Subscriber \

Events
Conductor >
I Admin
Sender
Publisher

— |IPC Log Buffer

Media (UDP, InfiniBand, PCI-e 3.0)

= Function/Method Call
= Voldatile Fields & Queves

Architecture

Publisher

Admin

Client

ﬁ

—

Conductor

Events

Subscriber

— |IPC Log Buffer

Media (UDP, InfiniBand, PCI-e 3.0)

Media Driver

Receiver

= Function/Method Call

= Volatile Fields & Queues
IPC Ring/Broadcast Buffer

Media Driver

Receiver

Client

Subscriber

Conductor [

Publisher

Data Structures

 Maps

 |PC Ring Buffers

 |PC Broadcast Buffers
» ITC Queues
 Dynamic Arrays

* Log Buffers

What does Aeron do?

Creates a

replicated persistent log
of messages

How would you design a log?

Header
Message 1

Header
Message 1

Header

Message 2

Header
Message 1

Header

Message 2

Header
Message 1

Header

Message 2

Message 3

Header
Message 1

Header

Message 2

Header

Message 3

Persistent data structures can
be safe to read without locks

One big file that
goes on forever?

Nolll

Page faults, page cache churn,
VM pressure, ...

Header

Message

Header

Message

Header

Message

Header

Message

Header

Message

Header

Message

Header

Message

Header

Message

How do we stay “wait-free”?

Message X

Message Y

Header
Message 1

Header

Message 2

Header

Message 3

Message X

Message Y

Header
Message 1

Header

Message 2

Header

Message 3

Message X

Message Y

Header

Message 1

Header

Message 2

Header

Message 3

Message X

Header

Message 1

Header

Message 2

Header

Message 3

Header

Message Y

Message X

Header

Message 1

Header

Message 2

Header

Message 3

Header

Message Y

Padding

Header
Message 1

Header

Message 2

Header

Message 3

Message X

Header

Message Y

Padding

Header
Message 1

Header

Message 2

Header

Message 3

Header

Message Y

Padding

Message X

What’s in a header?

Data Message Header

0 1 2 3
012345678901 234567890123456789°01
+-+-+-+-+-+-+-+-+-+-+-F-+-+-t—F-t—F-t—F-t—F—t—F—t—F-+—F-+—+-+-+-+
| Version |B|E| Flags | Type |
e s St T e e e ettt e
IR | Frame Length |
e e e e e +
IR| Term Offset |
e e e e e +
| Session ID |
o - +
I Stream ID |
- +
| Term ID |
- +

Unique identification of a byte

within each stream across time
(streamId, sessionId,

termId, termOffset)

How do we replicate a log?

We need a protocol of
messages

Sender

Receiver

Sender

Setup

Receiver

Sender

=

Status

Receiver

Sender

Data Data

=

Status

Receiver

=] == =

Heartbeat Data Data

Sender Receiver

=] == =

Heartbeat Data Data

Sender Receiver

NAK

How are message sfreams
reassembled?

File
Completed ' ;......................................; ' High wq.l.er Mqu

Header
Message 1

Completed —}- 4— High Water Mark

Completed —}-

Header
Message 1

Header

Message 3

Header
Message 1

Header

Message 2

Header

Message 3

What if a gap is never filled?

How do we know what is
consumed?

Publishers, Senders,
Receivers, and Subscribers
all keep position counters

Counters are the key to
flow control and monitoring

Protocols can be more subtle
than you think...

What about
“Self similar behaviour”?

4. What did we learn
on the way?

Humans suck at estimation!!!

Building distributed systems
is Hard!

We have more defensive code
than feature code

This does not mean the
code is riddled with
exception handlers

- Yuk!ll

Building distributed systems
is Rewarding:

Monitoring and Debugging

Loss, throughput, and buffer size
are all strongly related!!!

Know your OS network

PI‘O Tip parameters and how
o tune them

We can frack
application consumption

— No need for the Disruptor

Some parts of Java really suck!

Some parts of Java really suck!

Unsigned Types?

Some parts of Java really suck!
Unsigned Types?
NIO (most of) - Locks

Some parts of Java really suck!
Unsigned Types?
NIO (most of) - Locks
Off-heap, PAUSE, Signals, efc.

Some parts of Java really suck!
Unsigned Types?
NIO (most of) - Locks
Off-heap, PAUSE, Signals, efc.
String Encoding

Some parts of Java really suck!
Unsigned Types?
NIO (most of) - Locks
Off-heap, PAUSE, Signals, efc.
String Encoding

Managing External Resources

Some parts of Java really suck!
Unsigned Types?
NIO (most of) - Locks
Off-heap, PAUSE, Signals, efc.
String Encoding
Managing External Resources
Selectors - GC

Bytes!!!

public void main(final String[] args)
{

byte a = 0b0000 _0001;

byte b 0b0000_0010;

byte flags = a | b;

System.out.printf (
"flags=%s\n",
Integer. toBinaryString(flags)) ;

Bytes!!!

public void main(final String[] args)
{

byte a = 0b0000 _0001;

byte b 0b0000_0010;

byte flags = a | b;

System.out.printf (
"flags=%s\n",
Integer. toBinaryString(flags)) ;

Bytes!!!

Some parts of Java are really nice!

Some parts of Java are really nice!

Tooling — IDEs, Gradle, HdrHistogram

Some parts of Java are really nicel
Tooling — IDEs, Gradle, HdrHistogram

Lambdas & Method Handles

Some parts of Java are really nicel
Tooling — IDEs, Gradle, HdrHistogram
Lambdas & Method Handles

Bytecode Instrumentation

Some parts of Java are really nice!
Tooling — IDEs, Gradle, HdrHistogram
Lambdas & Method Handles
Bytecode Instrumentation

Unsafelll + Java 8

Some parts of Java are really nice!
Tooling — IDEs, Gradle, HdrHistogram
Lambdas & Method Handles
Bytecode Instrumentation
Unsafe!ll + Java 8

The Opftimiser

Some parts of Java are really nice!
Tooling — IDEs, Gradle, HdrHistogram
Lambdas & Method Handles
Bytecode Instrumentation
Unsafe!ll + Java 8

The Optimiser - Love/Hate

Some parts of Java are really nice!
Tooling — IDEs, Gradle, HdrHistogram
Lambdas & Method Handles
Bytecode Instrumentation
Unsafelll + Java 8
The Optimiser - Love/Hate

Garbage Collection!!!

5. What's the Roadmap?

We are major feature complete!

Just finished
Profiling and Tuning

Things are looking VE€I'Y good

20 Million 40 byte
messages per second!!!

Latency Distribution (us)

yr>

31BB¥AD

40

35

Latency (usec)
N N
o (€a]

=
(2]

10

RTT Latency by Percentile Distribution

0%

90%

99%

Percentile

99.9%

99.99%

== peron RTT

C++ Port coming next

Then IPC and Infiniband

Have discussed FPGA
implementations with 3'9 Parties

In closing...

Do epic shit,
or die trying.

Where can | find it?

https://github.com/real-logic/Aeron

Questions?

Blog: http://mechanical-sympathy.blogspot.com/
Twitter: @mjpt777

“Any intelligent fool can make things
bigger, more complex, and more violent.

It takes a touch of genius, and a lot of
courage, to move in the opposite direction.”

- Albert Einstein

http://mechanical-sympathy.blogspot.com/

