Aeron
High-Performance Open Source Message Transport

Martin Thompson - @mjpt777
1. Why build another **Product**?
2. What **Features** are really needed?
3. How does one **Design** for this?
4. What did we **Learn** on the way?
5. What’s the **Roadmap**?
1. Why build another product?
Not Invented Here!
There’s a story here...
But many others could benefit
Feature Bloat & Complexity
Not Fast Enough
Low-Latency is key
We are in a new world

Multi-core, Multi-socket, Cloud...
We are in a new world

Multi-core, Multi-socket, Cloud...

UDP, IPC, InfiniBand, RDMA, PCI-e
Aeron is trying a new approach
The Team

Todd Montgomery

Richard Warburton

Martin Thompson
2. What features are really needed?
Messaging

Publisher Channel Stream Subscriber

Publisher Channel

Publisher Channel

Publisher Channel
A library, **not a framework**, on which other abstractions and applications can be built
Composable Design
OSI layer 4 Transport for message oriented streams
OSI Layer 4 (Transport) Services

1. Connection Oriented Communication
2. Reliability
3. Flow Control
4. Congestion Avoidance/Control
5. Multiplexing
Connection Oriented Communication

word order

matters not
Reliability
Congestion Avoidance/Control
Multiplexing
Multi-Everything World!
Multi-Everything World

Publishers

Channel

Subscribers

Stream
Endpoints that scale
3. How does one design for this?
Design Principles

1. Garbage free in steady state running
2. Smart Batching in the message path
3. Wait-free algos in the message path
4. Non-blocking IO in the message path
5. No exceptional cases in message path
6. Apply the Single Writer Principle
7. Prefer unshared state
8. Avoid unnecessary data copies
It’s all about 3 things
It’s all about 3 things

1. System Architecture
It’s all about 3 things

1. System Architecture
2. Data Structures
It’s all about 3 things

1. System Architecture
2. Data Structures
3. Protocols of Interaction
Architecture

IPC Log Buffer
Architecture

Publisher → Sender → Receiver → Subscriber
Publisher ← Receiver ← Sender ← Subscriber

- IPC Log Buffer
- Media (UDP, InfiniBand, PCI-e 3.0)
Architecture

Publisher	Sender	Receiver	Subscriber
Admin | Conductor | Media | Events
------------|--------|----------|------------
Events | Conductor | Media | Admin
------------|--------|----------|------------
Subscriber | Receiver | Sender | Publisher

- **IPC Log Buffer**
- **Media (UDP, InfiniBand, PCI-e 3.0)**
- **Function/Method Call**
- **Volatile Fields & Queues**
Data Structures

• Maps
• IPC Ring Buffers
• IPC Broadcast Buffers
• ITC Queues
• Dynamic Arrays
• Log Buffers
What does Aeron do?

Creates a replicated persistent log of messages
How would you design a log?
File

- Header
- Message 1
- Header
- Message 2

Tail
File

Header

Message 1

Header

Message 2

Message 3

Tail
Persistent data structures can be safe to read without locks
One big file that goes on forever?
No!!!

Page faults, page cache churn, VM pressure, ...
How do we stay “wait-free”?
File
- Header
- Message 1
- Header
- Message 2
- Header
- Message 3

Message X

Message Y

Tail
What’s in a header?
Data Message Header

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Frame Length</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Term Offset</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Session ID</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Stream ID</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Term ID</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Encoded Message</td>
</tr>
</tbody>
</table>

...
Unique identification of a byte within each stream across time:

(streamId, sessionId, termId, termOffset)
How do we replicate a log?
We need a protocol of messages
Sender

Setup

Receiver
Sender

Data

Data

Status

Receiver
How are message streams reassembled?
Completed

File

Header
Message 1

Header
Message 3

High Water Mark
What if a gap is never filled?
How do we know what is consumed?
Publishers, Senders, Receivers, and Subscribers all keep position counters
Counters are the key to flow control and monitoring
Protocols can be more subtle than you think...
What about “Self similar behaviour”?
4. What did we learn on the way?
Humans suck at estimation!!!
Building distributed systems is Hard!
We have more defensive code than feature code
This does not mean the code is riddled with exception handlers – Yuk!!!
Building distributed systems is *Rewarding!*
Monitoring and Debugging
Loss, throughput, and buffer size are all strongly related!!!
Pro Tip: Know your OS network parameters and how to tune them
We can track application consumption – No need for the Disruptor
Some parts of Java really suck!
Some parts of Java really suck!

Unsigned Types?
Some parts of Java really suck!

Unsigned Types?

NIO (most of) - Locks
Some parts of Java really suck!

Unsigned Types?

NIO (most of) - Locks

Off-heap, PAUSE, Signals, etc.
Some parts of Java really suck!

Unsigned Types?

NIO (most of) - Locks

Off-heap, PAUSE, Signals, etc.

String Encoding
Some parts of Java really suck!

Unsigned Types?

NIO (most of) - Locks

Off-heap, PAUSE, Signals, etc.

String Encoding

Managing External Resources
Some parts of Java really suck!

Unsigned Types?

NIO (most of) - Locks

Off-heap, PAUSE, Signals, etc.

String Encoding

Managing External Resources

Selectors - GC
Bytes!!!

```java
public void main(final String[] args) {
    byte a = 0b0000_0001;
    byte b = 0b0000_0010;

    byte flags = a | b;

    System.out.printf(
        "flags=%s\n",
        Integer.toBinaryString(flags));
}
```
public void main(final String[] args)
{
 byte a = 0b0000_0001;
 byte b = 0b0000_0010;

 byte flags = a | b;

 System.out.printf("flags=%s\n", Integer.toBinaryString(flags));
}
Bytes!!!

```java
public void main(final String[] args)
{
    byte a = 0b0000_0001;
    byte b = 0b0000_0010;
    byte flags = a | b;

    System.out.printf("flags=%s\n",
        Integer.toBinaryString(flags));
}
```

Error:(8, 24) java: incompatible types: possible lossy conversion from int to byte
Some parts of Java are really nice!
Some parts of Java are really nice!

Tooling — IDEs, Gradle, HdrHistogram
Some parts of Java are really nice!

Tooling – IDEs, Gradle,_hdrHistogram

Lambdas & Method Handles
Some parts of Java are really nice!

Tooling – IDEs, Gradle, HdrHistogram

Lambdas & Method Handles

Bytecode Instrumentation
Some parts of Java are really nice!

Tooling — IDEs, Gradle, HdrHistogram

Lambdas & Method Handles

Bytecode Instrumentation

Unsafe!!! + Java 8
Some parts of Java are really nice!

Tooling – IDEs, Gradle, HdrHistogram

Lambdas & Method Handles

Bytecode Instrumentation

Unsafe!!! + Java 8

The Optimiser
Some parts of Java are really nice!

Tooling – IDEs, Gradle, HdrHistogram

Lambdas & Method Handles

Bytecode Instrumentation

Unsafe!!! + Java 8

The Optimiser – Love/Hate
Some parts of Java are really nice!

Tooling – IDEs, Gradle, HdrHistogram

Lambdas & Method Handles

Bytecode Instrumentation

Unsafe!!! + Java 8

The Optimiser – Love/Hate

Garbage Collection!!!
5. What’s the Roadmap?
We are major feature complete!
Just finished Profiling and Tuning
Things are looking very good
20 Million 40 byte messages per second!!!
C++ Port coming next
Then IPC and Infiniband
Have discussed FPGA implementations with 3rd Parties
In closing...
Do epic shit, or die trying.
Where can I find it?

https://github.com/real-logic/Aeron
Questions?

Twitter: [@mjpt777](https://twitter.com/mjpt777)

“Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch of genius, and a lot of courage, to move in the opposite direction.”

- Albert Einstein