

Towards
Cloud-centric
Development

What if we stopped treating the cloud like traditional
servers?

Peter van Hardenberg
@pvh

…they would have told me faster horses.”

“If I asked the people what they wanted…

platform-as-a-service
a machine for turning code into useful applications

Production
on Demand

“test your GitHub PRs against a fork of your Heroku app”
!

— RainforestQA

What if you could automatically
test in production?

pull request
for feature

app +
feature

release!

production
app

github/
master

fork

Pre-abstracted

• Provision servers

• Design release process

• Develop monitoring capabilities

• Perform capacity management / scale projection

• Substantial per-app cost

• Conclusion: reduce cost by reusing architecture

Abstracted

• git push heroku master!

• significant reduction in day-to-day operations

• Conclusion: dev & production costs are reduced

Post-abstracted

• Individual applications approach zero overhead

• Microservice architectures become feasible

• Clone whole running applications!

• Conclusion: decompose application architecture

Microservices
love

PaaS.

postgression
http://www.postgression.com/

stateless databases
for every test run… or whatever

Databases
 on Demand

Un-abstracted

• Predict required scale up-front

• Managed by in-house specialist

• Notoriously fragile

• Precious snowflake

Abstracted

• Managed database on demand

• Take advantage of provider experience

• In-house data gurus focus on application

• Developers have parity with production

Post-abstracted

• Separate databases for separate concerns

• Respond to scale as it happens

• Take easy advantage of sophisticated
infrastructure

• Clone production to test migrations

• Replicas for reporting

• Disposable databases for testing in parallel

The hidden
 cost of releasing

software

Big Releases

0

40

80

120

160

1.0 1.1 1.2 1.2.1 1.3

Big Releases

0

40

80

120

160

1.0 1.1 1.2 1.2.1 1.3

Big Releases

0

40

80

120

160

1.0 1.1 1.2 1.2.1 1.3

Hidden Integration Costs

0

40

80

120

160

1.0 1.1 1.2 1.2.1 1.3

let’s get mathematical
(I apologize to any actual mathematicians in the room.)

V = nF + n2I + R
Cost of Releasing a Version

!
F: cost per feature

I: integration coefficient
R: cost to release

S = ∑ (nF + n2I + R)

Total Cost of Software

t

lim(S)
R → 0

R > 0: n > 1
R = 0: n = 1
reduced release overhead

makes small releases more efficient

Operational Overhead

• Certification processes

• Database migrations

• Branch merges

• Infrastructure changes

• Integration of new technologies

Costs of Change

• Big changes are riskier than small changes.

• Inexpensive releases enable smaller changes.

• Smaller changes are less expensive overall.

“Hello, IT.”
“Have you tried completely destroying the computer and

replacing it with one that isn’t broken?”

don’t fix servers
they’re free, remember?

Treat your servers
like cattle,
not pets.

Why
Consume
Cloud
Services?

Heroku Postgres deals
with once-per decade

bugs daily.

Who has to fix it when
your database

develops corruption?

Amazon has
hundreds of thousands

of servers.

Who on your team is
going to sleep at the

co-lo?

Service-based
businesses get paid

when you are happy.

Consulting
businesses get paid
when you are sad.

Great services, like great
consultancies, focus on

making your project
successful.

Opportunities
Things I’m surprised nobody has done yet.

programming
environments as a

service
setting up & maintaining laptop dev/staging/prod

environments is the absolute worst and totally error prone

release orchestration
automating code hosting, CI, paas & monitoring

the pieces are all there!

continuous
disintegration

rollbacks as a service

circuit breakers
as a service

better failure modes for microservices
(because nobody anywhere ever gets this right)

Play along in the audience
Think of something horrible about development.

What if it went away? What new things could you do?

Conclusions
in which we reiterate our argument

Technology on-demand
creates new opportunity.

Early usage just does
the old job better.

Real breakthroughs
happen when we step

back and ask:

“What next?”

fin
questions?

@pvh

