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About H2O and 0xdata

 H2O is a platform for distributed in memory predictive 

analytics and machine learning

 Pure Java, Apache v2 Open Source

 Easy deployment with a single jar, automatic cloud 

discovery

 https://github.com/0xdata/h2o

 https://github.com/0xdata/h2o-dev

 Google group h2ostream

 ~15000 commits over two years, very active developers 



Overview

 H2O Architecture

 GLM on H2O

 demo

 Random Forest



H2O Architecture



Practical Data Science

 Data scientists are not necessarily trained as computer 

scientists

 A “typical” data science team is about 20% CS, working 

mostly on UI and visualization tools

 An example is Netflix

 Statisticians prototype in R

 When done, developers recode the code in Java and 

Hadoop



What we want from modern 

machine learning platform

Requirements Solution

Fast & Interactive In-Memory

Big Data (no sampling) Distributed

Flexibility Open Source

Extensibility API/SDK

Portability Java, REST/JSON

Infrastructure Cloud or On-Premise

Hadoop or Private Cluster



Core

H2O Architecture

Distributed in memory K/V Store

Column Compressed Data

Memory Managed

Distributed Tasks

Map/Reduce

GBM, Random Forest,

GLM, PCA, K-Means,

Deep Learning

Algorithms

REST API, R, Python,

Web Interface

Frontends

HDFS, S3, NFS, Web Upload

Data Sources



Distributed Data Taxonomy

Vector



Distributed Data Taxonomy

Vector
The vector may be very large ~ billions of 

rows

- Store compressed (often 2-4x)

- Access as Java primitives with on the fly

decompression

- Support fast Random access

- Modifiable with Java memory semantics



Distributed Data Taxonomy

Vector Large vectors must be distributed over 

multiple JVMs

- Vector is split into chunks

- Chunk is a unit of parallel access

- Each chunk ~ 1000 elements

- Per chunk compression

- Homed to a single node

- Can be spilled to disk

- GC very cheap



Distributed Data Taxonomy

age sex zip ID

A row is always 

stored in a single 

JVM

Distributed data frame

- Similar to R frame

- Adding and removing

columns is cheap

- Row-wise access



Distributed Data Taxonomy

 Elem – a java double

 Chunk – a collection of thousands to millions of elems

 Vec – a collection of Chunks

 Frame – a collection of Vecs

 Row i - i’th elements of all the vecs in a frame



Distributed Fork/Join

JVM

task

JVM

task

JVM
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JVM

task
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Distributed Fork/Join

JVM

task

JVM

task

JVM

task

JVM

task

JVM

task

Task is distributed in a tree

pattern

- Results are reduced at

each inner node

- Returns with a single

result when all subtasks

done



Distributed Fork/Join

JVM

task

JVM     

task

task task

tasktaskchunk

chunk chunk

- On each node the task is parallelized over home chunks

using Fork/Join

- No blocked thread using continuation passing style



Distributed Code

 Simple tasks 

 Executed on a single remote node

 Map/Reduce

 Two operations

 map(x) -> y

 reduce(y, y) -> y

 Automatically distributed amongst the cluster and worker 

threads inside the nodes



Distributed Code

double sumY2 = new MRTask2(){

double map(double x){

return x*x;

}

double reduce(double x, double y){

return x + y;

}

}.doAll(vec);



Demo
GLM



CTR Prediction Contest

 Kaggle contest- clickthrought rate prediction

 Data

 11 days worth of clickthrough data from Avazu

 ~ 8GB, ~ 44 million rows

 Mostly categoricals

 Large number of features (predictors), good fit for 

linear models



Linear Regression

 Least Squares Fit



Logistic Regression

 Least Squares Fit



Logistic Regression

 GLM Fit



Generalized Linear Modelling

 Solved by iterative reweighted least squares

 Computation in two parts

 Compute 𝑋𝑇𝑋

 Compute inverse of 𝑋𝑇𝑋 (Cholesky Decomposition)

 Assumption

 Number of rows >> number of cols

 (use strong rules to filter out inactive columns)

 Complexity

 Nrows * Ncols2/N*P +Ncols3/P



Generalized Linear Modelling

 Solved by iterative reweighted least squares

 Computation in two parts

 Compute 𝑋𝑇𝑋

 Compute inverse of 𝑋𝑇𝑋 (Cholesky Decomposition)

 Assumption

 Number of rows >> number of cols

 (use strong rules to filter out inactive columns)

 Complexity

 Nrows * Ncols2/N*P +Ncols3/P

Distributed

Single Node



Random Forest



How Big is Big?

 Data set size is relative

 Does the data fit in one machine’s RAM

 Does the data fit in one machine’s disk

 Does the data fit in several machine’s RAM

 Does the data fit in several machine’s disk



Why so Random?

 Introducing

 Random Forest

 Bagging

 Out of bag error estimate

 Confusion matrix

 Leo Breiman: Random Forests. Machine Learning, 2001



Classification Trees

 Consider a supervised learning problem with a simple 

data set with two classes and two features x in [1,4] 

and y in [5,8]

 We can build a classification tree to predict of new 

observations



Classification Trees

 Classification trees often overfit the data



Random Forest

 Overfiting is avoided by building multiple randomized 
and far less precise (partial) trees

 All these trees in fact underfit

 Result is obtained by a vote over the ensemble of the 
decision trees 

 Different voting strategies possible



Random Forest

 Each tree sees a different part of the training set and 

captures the information it contains



Random Forest 

 Each tree sees a different random selection of the 

training set (without replacement)

 Bagging

 At each split, a random subset of features is selected 

over which the decision should maximize gain

 Gini Impurity

 Information gain
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Validating the trees

 We can exploit the fact that each tree sees only a 

subset of the training data

 Each tree in the forest is validated on the training data 

it has never seen 
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Validating the trees

 We can exploit the fact that each tree sees only a 

subset of the training data

 Each tree in the forest is validated on the training data 

it has never seen 

Errors

(Out of Bag Error)



Validating the Forest

 Confusion Matrix is build for the forest and training data

 During a vote, trees trained on the current row are 

ignored

actual/

assigned
Red Green

Red 15 5 33%

Green 1 10 10%



Distributing and Parallelizing

 How do we sample?

 How do we select splits?

 How do we estimate OOBE?



Distributing and Parallelizing

 How do we sample?

 How do we select splits?

 How do we estimate OOBE?

 When random data sample fits in memory, RF building 

parallelize extremely well

 Parallel tree building is trivial

 Validation requires trees to be collocated with data

 Moving trees to data

 (large training datasets can produce huge trees!)



Random Forest in H2O

 Trees must be built in parallel over randomized data 

samples

 To calculate gains, feature sets must be sorted at each 

split



Random Forest in H2O

 Trees must be built in parallel over randomized data 

samples

 H2O reads data and distributes them over the nodes

 Each node builds trees in parallel on a sample of the data 

that fits locally

 To calculate gains, feature sets must be sorted at each 

split



Random Forest in H2O

 Trees must be built in parallel over randomized data 

samples

 To calculate gains, feature sets must be sorted at each 

split

 the values are discretized -> instead of sorting features 

are represented as arrays of their cardinality

 { (2, red), (3.4, red), (5, green), (6.1, green) }

becomes

{ (1, red), (2, red), (3, green), (4, green) }

 But trees can be very large (~100k splits)



Random Forest in H2O

 Trees must be built in parallel over randomized data 

samples

 To calculate gains, feature sets must be sorted at each 

split

 the values are discretized -> instead of sorting features 

are represented as arrays of their cardinality

 { (2, red), (3.4, red), (5, green), (6.1, green) }

becomes

{ (1, red), (2, red), (3, green), (4, green) }

 But trees can be very large (~100k splits)

Binning



Lessons Learned

 Java Random is not really random

 Small seeds give very bad random sequences resulting in 

poor RF performance

 And we of course started with a deterministic seed of 42:)

 But determinism is important for debugging 

 Linux kernel drops TCP connections silently when under 

stress

 Sender opens connection, sends, closes w/o exceptions, 

but receiver never sees the data

 Need to recycle TCP connections and use TCP reliable 

delayer

 Good Diagnostics to detect hardware issues is needed

 Specific UDP packet drops with 100% chance



Demo
Continued



Q & A
Thank you




