Please ask questions via the mobile app!

<u>Engage</u>

Fast Analytics on Big Data with H20

Oxdata.com, h2o.ai

Tomas Nykodym, Petr Maj

Team

About H2O and Oxdata

- H2O is a platform for distributed in memory predictive analytics and machine learning
- Pure Java, Apache v2 Open Source
- Easy deployment with a single jar, automatic cloud discovery
- https://github.com/0xdata/h2o
- https://github.com/0xdata/h2o-dev
- Google group h2ostream
- ~15000 commits over two years, very active developers

Overview

- H20 Architecture
- ► GLM on H2O
 - ▶ demo
- Random Forest

H2O Architecture

Practical Data Science

- Data scientists are not necessarily trained as computer scientists
- A "typical" data science team is about 20% CS, working mostly on UI and visualization tools
- An example is Netflix
 - Statisticians prototype in R
 - When done, developers recode the code in Java and Hadoop

What we want from modern machine learning platform

Requirements	Solution
Fast & Interactive	In-Memory
Big Data (no sampling)	Distributed
Flexibility	Open Source
Extensibility	API/SDK
Portability	Java, REST/JSON
Infrastructure	Cloud or On-Premise Hadoop or Private Cluster

H2O Architecture

Vector

Vector

Large vectors must be distributed over multiple JVMs

- Vector is split into chunks
- Chunk is a unit of parallel access
- Each chunk ~ 1000 elements
- Per chunk compression
- Homed to a single node
- Can be spilled to disk
- GC very cheap

- Elem a java double
- Chunk a collection of thousands to millions of elems
- Vec a collection of Chunks
- Frame a collection of Vecs
- Row i i'th elements of all the vecs in a frame

Distributed Fork/Join

Distributed Fork/Join

- On each node the task is parallelized over home chunks using Fork/Join
- No blocked thread using continuation passing style

Distributed Code

- Simple tasks
 - Executed on a single remote node
- Map/Reduce
 - Two operations
 - ▶ map(x) -> y
 - reduce(y, y) -> y
 - Automatically distributed amongst the cluster and worker threads inside the nodes

Distributed Code

```
double sumY2 = new MRTask2() {
    double map(double x) {
        return x*x;
    }
    double reduce(double x, double y) {
        return x + y;
    }
}.doAll(vec);
```

Demo

GLM

CTR Prediction Contest

- Kaggle contest- clickthrought rate prediction
- Data
 - > 11 days worth of clickthrough data from Avazu
 - ~ 8GB, ~ 44 million rows
 - Mostly categoricals
- Large number of features (predictors), good fit for linear models

Linear Regression

Logistic Regression

Least Squares Fit

Logistic Regression

Generalized Linear Modelling

- Solved by iterative reweighted least squares
- Computation in two parts
 - **Compute** $X^T X$
 - **Compute inverse of** $X^T X$ (Cholesky Decomposition)
- Assumption
 - Number of rows >> number of cols
 - (use strong rules to filter out inactive columns)
- Complexity
 - Nrows * Ncols2/N*P +Ncols3/P

Generalized Linear Modelling

- Solved by iterative reweighted least squares
- Computation in two parts
 - $\blacktriangleright \quad \text{Compute } X^T X \longrightarrow \text{Distributed}$
 - **Compute inverse of** $X^T X$ (Cholesky Decomposition)

Single Node

- Assumption
 - Number of rows >> number of cols
 - (use strong rules to filter out inactive columns)
- Complexity
 - Nrows * Ncols2/N*P +Ncols3/P

How Big is Big?

Data set size is relative

- Does the data fit in one machine's RAM
- Does the data fit in one machine's disk
- Does the data fit in several machine's RAM
- Does the data fit in several machine's disk

Why so Random?

- Introducing
 - Random Forest
 - Bagging
 - Out of bag error estimate
 - Confusion matrix

Leo Breiman: Random Forests. Machine Learning, 2001

Classification Trees

- Consider a supervised learning problem with a simple data set with two classes and two features x in [1,4] and y in [5,8]
- We can build a classification tree to predict of new observations

Classification Trees

Classification trees often overfit the data

- Overfiting is avoided by building multiple randomized and far less precise (partial) trees
 - All these trees in fact underfit
- Result is obtained by a vote over the ensemble of the decision trees
 - Different voting strategies possible

Each tree sees a different part of the training set and captures the information it contains

Each tree sees a different random selection of the training set (without replacement)

- At each split, a random subset of features is selected over which the decision should maximize gain
 - Gini Impurity
 - Information gain

- Each tree sees a different random selection of the training set (without replacement)
 - Bagging
- At each split, a random subset of features is selected over which the decision should maximize gain

- Gini Impurity
- Information gain

- Each tree sees a different random selection of the training set (without replacement)
 - Bagging
- At each split, a random subset of features is selected over which the decision should maximize gain

- Gini Impurity $I_G(f) = \sum_{i=1}^m f_i(1-f_i) = \sum_{i=1}^m (f_i f_i^2) = \sum_{i=1}^m f_i \sum_{i=1}^m f_i^2 = 1 \sum_{i=1}^m f_i^2$
- Information gain
Random Forest

- Each tree sees a different random selection of the training set (without replacement)
 - Bagging
- At each split, a random subset of features is selected over which the decision should maximize gain

- Gini Impurity
- Information gain $\langle I_E(f) = -\sum_{i=1}^m f_i \log_2 f_i$

- We can exploit the fact that each tree sees only a subset of the training data
- Each tree in the forest is validated on the training data it has never seen

- We can exploit the fact that each tree sees only a subset of the training data
- Each tree in the forest is validated on the training data it has never seen

- We can exploit the fact that each tree sees only a subset of the training data
- Each tree in the forest is validated on the training data it has never seen

- We can exploit the fact that each tree sees only a subset of the training data
- Each tree in the forest is validated on the training data it has never seen

- We can exploit the fact that each tree sees only a subset of the training data
- Each tree in the forest is validated on the training data it has never seen

Validating the Forest

Confusion Matrix is build for the forest and training data

During a vote, trees trained on the current row are ignored

actual/ assigned	Red	Green	
Red	15	5	33%
Green	1	10	10%

Distributing and Parallelizing

- How do we sample?
- How do we select splits?
- ► How do we estimate OOBE?

Distributing and Parallelizing

- How do we sample?
- How do we select splits?
- How do we estimate OOBE?
- When random data sample fits in memory, RF building parallelize extremely well
 - Parallel tree building is trivial
 - Validation requires trees to be collocated with data
 - Moving trees to data
 - (large training datasets can produce huge trees!)

- Trees must be built in parallel over randomized data samples
- To calculate gains, feature sets must be sorted at each split

- Trees must be built in parallel over randomized data samples
 - H2O reads data and distributes them over the nodes
 - Each node builds trees in parallel on a sample of the data that fits locally
- To calculate gains, feature sets must be sorted at each split

- Trees must be built in parallel over randomized data samples
- To calculate gains, feature sets must be sorted at each split
 - the values are discretized -> instead of sorting features are represented as arrays of their cardinality
 - { (2, red), (3.4, red), (5, green), (6.1, green) } becomes { (1, red), (2, red), (3, green), (4, green) }
 - But trees can be very large (~100k splits)

- Trees must be built in parallel over randomized data samples
- To calculate gains, feature sets must be sorted at each split
 - the values are discretized -> instead of sorting features are represented as arrays of their cardinality
 - { (2, red), (3.4, red), (5, green), (6.1, green) } becomes { (1, red), (2, red), (3, green), (4, green) }

Binning

But trees can be very large (~100k splits)

Lessons Learned

Java Random is not really random

- Small seeds give very bad random sequences resulting in poor RF performance
 - ▶ And we of course started with a deterministic seed of 42:)
- But determinism is important for debugging
- Linux kernel drops TCP connections silently when under stress
 - Sender opens connection, sends, closes w/o exceptions, but receiver never sees the data
 - Need to recycle TCP connections and use TCP reliable delayer
- Good Diagnostics to detect hardware issues is needed
 - Specific UDP packet drops with 100% chance

Demo

Continued

Q&A Thank you

Please evaluate this talk via the mobile app!

<u>Engage</u>

