

Fast Analytics on

Big Data with H20
0xdata.com, h2o.ai

Tomas Nykodym, Petr Maj

Team

About H2O and 0xdata

 H2O is a platform for distributed in memory predictive

analytics and machine learning

 Pure Java, Apache v2 Open Source

 Easy deployment with a single jar, automatic cloud

discovery

 https://github.com/0xdata/h2o

 https://github.com/0xdata/h2o-dev

 Google group h2ostream

 ~15000 commits over two years, very active developers

Overview

 H2O Architecture

 GLM on H2O

 demo

 Random Forest

H2O Architecture

Practical Data Science

 Data scientists are not necessarily trained as computer

scientists

 A “typical” data science team is about 20% CS, working

mostly on UI and visualization tools

 An example is Netflix

 Statisticians prototype in R

 When done, developers recode the code in Java and

Hadoop

What we want from modern

machine learning platform

Requirements Solution

Fast & Interactive In-Memory

Big Data (no sampling) Distributed

Flexibility Open Source

Extensibility API/SDK

Portability Java, REST/JSON

Infrastructure Cloud or On-Premise

Hadoop or Private Cluster

Core

H2O Architecture

Distributed in memory K/V Store

Column Compressed Data

Memory Managed

Distributed Tasks

Map/Reduce

GBM, Random Forest,

GLM, PCA, K-Means,

Deep Learning

Algorithms

REST API, R, Python,

Web Interface

Frontends

HDFS, S3, NFS, Web Upload

Data Sources

Distributed Data Taxonomy

Vector

Distributed Data Taxonomy

Vector
The vector may be very large ~ billions of

rows

- Store compressed (often 2-4x)

- Access as Java primitives with on the fly

decompression

- Support fast Random access

- Modifiable with Java memory semantics

Distributed Data Taxonomy

Vector Large vectors must be distributed over

multiple JVMs

- Vector is split into chunks

- Chunk is a unit of parallel access

- Each chunk ~ 1000 elements

- Per chunk compression

- Homed to a single node

- Can be spilled to disk

- GC very cheap

Distributed Data Taxonomy

age sex zip ID

A row is always

stored in a single

JVM

Distributed data frame

- Similar to R frame

- Adding and removing

columns is cheap

- Row-wise access

Distributed Data Taxonomy

 Elem – a java double

 Chunk – a collection of thousands to millions of elems

 Vec – a collection of Chunks

 Frame – a collection of Vecs

 Row i - i’th elements of all the vecs in a frame

Distributed Fork/Join

JVM

task

JVM

task

JVM

task

JVM

task

JVM

task

Distributed Fork/Join

JVM

task

JVM

task

JVM

task

JVM

task

JVM

task

Task is distributed in a tree

pattern

- Results are reduced at

each inner node

- Returns with a single

result when all subtasks

done

Distributed Fork/Join

JVM

task

JVM

task

task task

tasktaskchunk

chunk chunk

- On each node the task is parallelized over home chunks

using Fork/Join

- No blocked thread using continuation passing style

Distributed Code

 Simple tasks

 Executed on a single remote node

 Map/Reduce

 Two operations

 map(x) -> y

 reduce(y, y) -> y

 Automatically distributed amongst the cluster and worker

threads inside the nodes

Distributed Code

double sumY2 = new MRTask2(){

double map(double x){

return x*x;

}

double reduce(double x, double y){

return x + y;

}

}.doAll(vec);

Demo
GLM

CTR Prediction Contest

 Kaggle contest- clickthrought rate prediction

 Data

 11 days worth of clickthrough data from Avazu

 ~ 8GB, ~ 44 million rows

 Mostly categoricals

 Large number of features (predictors), good fit for

linear models

Linear Regression

 Least Squares Fit

Logistic Regression

 Least Squares Fit

Logistic Regression

 GLM Fit

Generalized Linear Modelling

 Solved by iterative reweighted least squares

 Computation in two parts

 Compute 𝑋𝑇𝑋

 Compute inverse of 𝑋𝑇𝑋 (Cholesky Decomposition)

 Assumption

 Number of rows >> number of cols

 (use strong rules to filter out inactive columns)

 Complexity

 Nrows * Ncols2/N*P +Ncols3/P

Generalized Linear Modelling

 Solved by iterative reweighted least squares

 Computation in two parts

 Compute 𝑋𝑇𝑋

 Compute inverse of 𝑋𝑇𝑋 (Cholesky Decomposition)

 Assumption

 Number of rows >> number of cols

 (use strong rules to filter out inactive columns)

 Complexity

 Nrows * Ncols2/N*P +Ncols3/P

Distributed

Single Node

Random Forest

How Big is Big?

 Data set size is relative

 Does the data fit in one machine’s RAM

 Does the data fit in one machine’s disk

 Does the data fit in several machine’s RAM

 Does the data fit in several machine’s disk

Why so Random?

 Introducing

 Random Forest

 Bagging

 Out of bag error estimate

 Confusion matrix

 Leo Breiman: Random Forests. Machine Learning, 2001

Classification Trees

 Consider a supervised learning problem with a simple

data set with two classes and two features x in [1,4]

and y in [5,8]

 We can build a classification tree to predict of new

observations

Classification Trees

 Classification trees often overfit the data

Random Forest

 Overfiting is avoided by building multiple randomized
and far less precise (partial) trees

 All these trees in fact underfit

 Result is obtained by a vote over the ensemble of the
decision trees

 Different voting strategies possible

Random Forest

 Each tree sees a different part of the training set and

captures the information it contains

Random Forest

 Each tree sees a different random selection of the

training set (without replacement)

 Bagging

 At each split, a random subset of features is selected

over which the decision should maximize gain

 Gini Impurity

 Information gain

Random Forest

 Each tree sees a different random selection of the

training set (without replacement)

 Bagging

 At each split, a random subset of features is selected

over which the decision should maximize gain

 Gini Impurity

 Information gain

Random Forest

 Each tree sees a different random selection of the

training set (without replacement)

 Bagging

 At each split, a random subset of features is selected

over which the decision should maximize gain

 Gini Impurity

 Information gain

Random Forest

 Each tree sees a different random selection of the

training set (without replacement)

 Bagging

 At each split, a random subset of features is selected

over which the decision should maximize gain

 Gini Impurity

 Information gain

Validating the trees

 We can exploit the fact that each tree sees only a

subset of the training data

 Each tree in the forest is validated on the training data

it has never seen

Validating the trees

 We can exploit the fact that each tree sees only a

subset of the training data

 Each tree in the forest is validated on the training data

it has never seen
Original training

data

Validating the trees

 We can exploit the fact that each tree sees only a

subset of the training data

 Each tree in the forest is validated on the training data

it has never seen

Data used to

construct the

tree

Validating the trees

 We can exploit the fact that each tree sees only a

subset of the training data

 Each tree in the forest is validated on the training data

it has never seen

Data used to validate

the tree

Validating the trees

 We can exploit the fact that each tree sees only a

subset of the training data

 Each tree in the forest is validated on the training data

it has never seen

Errors

(Out of Bag Error)

Validating the Forest

 Confusion Matrix is build for the forest and training data

 During a vote, trees trained on the current row are

ignored

actual/

assigned
Red Green

Red 15 5 33%

Green 1 10 10%

Distributing and Parallelizing

 How do we sample?

 How do we select splits?

 How do we estimate OOBE?

Distributing and Parallelizing

 How do we sample?

 How do we select splits?

 How do we estimate OOBE?

 When random data sample fits in memory, RF building

parallelize extremely well

 Parallel tree building is trivial

 Validation requires trees to be collocated with data

 Moving trees to data

 (large training datasets can produce huge trees!)

Random Forest in H2O

 Trees must be built in parallel over randomized data

samples

 To calculate gains, feature sets must be sorted at each

split

Random Forest in H2O

 Trees must be built in parallel over randomized data

samples

 H2O reads data and distributes them over the nodes

 Each node builds trees in parallel on a sample of the data

that fits locally

 To calculate gains, feature sets must be sorted at each

split

Random Forest in H2O

 Trees must be built in parallel over randomized data

samples

 To calculate gains, feature sets must be sorted at each

split

 the values are discretized -> instead of sorting features

are represented as arrays of their cardinality

 { (2, red), (3.4, red), (5, green), (6.1, green) }

becomes

{ (1, red), (2, red), (3, green), (4, green) }

 But trees can be very large (~100k splits)

Random Forest in H2O

 Trees must be built in parallel over randomized data

samples

 To calculate gains, feature sets must be sorted at each

split

 the values are discretized -> instead of sorting features

are represented as arrays of their cardinality

 { (2, red), (3.4, red), (5, green), (6.1, green) }

becomes

{ (1, red), (2, red), (3, green), (4, green) }

 But trees can be very large (~100k splits)

Binning

Lessons Learned

 Java Random is not really random

 Small seeds give very bad random sequences resulting in

poor RF performance

 And we of course started with a deterministic seed of 42:)

 But determinism is important for debugging

 Linux kernel drops TCP connections silently when under

stress

 Sender opens connection, sends, closes w/o exceptions,

but receiver never sees the data

 Need to recycle TCP connections and use TCP reliable

delayer

 Good Diagnostics to detect hardware issues is needed

 Specific UDP packet drops with 100% chance

Demo
Continued

Q & A
Thank you

