


Fast Analytics on 

Big Data with H20
0xdata.com, h2o.ai

Tomas Nykodym, Petr Maj



Team



About H2O and 0xdata

 H2O is a platform for distributed in memory predictive 

analytics and machine learning

 Pure Java, Apache v2 Open Source

 Easy deployment with a single jar, automatic cloud 

discovery

 https://github.com/0xdata/h2o

 https://github.com/0xdata/h2o-dev

 Google group h2ostream

 ~15000 commits over two years, very active developers 



Overview

 H2O Architecture

 GLM on H2O

 demo

 Random Forest



H2O Architecture



Practical Data Science

 Data scientists are not necessarily trained as computer 

scientists

 A “typical” data science team is about 20% CS, working 

mostly on UI and visualization tools

 An example is Netflix

 Statisticians prototype in R

 When done, developers recode the code in Java and 

Hadoop



What we want from modern 

machine learning platform

Requirements Solution

Fast & Interactive In-Memory

Big Data (no sampling) Distributed

Flexibility Open Source

Extensibility API/SDK

Portability Java, REST/JSON

Infrastructure Cloud or On-Premise

Hadoop or Private Cluster



Core

H2O Architecture

Distributed in memory K/V Store

Column Compressed Data

Memory Managed

Distributed Tasks

Map/Reduce

GBM, Random Forest,

GLM, PCA, K-Means,

Deep Learning

Algorithms

REST API, R, Python,

Web Interface

Frontends

HDFS, S3, NFS, Web Upload

Data Sources



Distributed Data Taxonomy

Vector



Distributed Data Taxonomy

Vector
The vector may be very large ~ billions of 

rows

- Store compressed (often 2-4x)

- Access as Java primitives with on the fly

decompression

- Support fast Random access

- Modifiable with Java memory semantics



Distributed Data Taxonomy

Vector Large vectors must be distributed over 

multiple JVMs

- Vector is split into chunks

- Chunk is a unit of parallel access

- Each chunk ~ 1000 elements

- Per chunk compression

- Homed to a single node

- Can be spilled to disk

- GC very cheap



Distributed Data Taxonomy

age sex zip ID

A row is always 

stored in a single 

JVM

Distributed data frame

- Similar to R frame

- Adding and removing

columns is cheap

- Row-wise access



Distributed Data Taxonomy

 Elem – a java double

 Chunk – a collection of thousands to millions of elems

 Vec – a collection of Chunks

 Frame – a collection of Vecs

 Row i - i’th elements of all the vecs in a frame



Distributed Fork/Join

JVM

task

JVM

task

JVM

task

JVM

task

JVM

task



Distributed Fork/Join

JVM

task

JVM

task

JVM

task

JVM

task

JVM

task

Task is distributed in a tree

pattern

- Results are reduced at

each inner node

- Returns with a single

result when all subtasks

done



Distributed Fork/Join

JVM

task

JVM     

task

task task

tasktaskchunk

chunk chunk

- On each node the task is parallelized over home chunks

using Fork/Join

- No blocked thread using continuation passing style



Distributed Code

 Simple tasks 

 Executed on a single remote node

 Map/Reduce

 Two operations

 map(x) -> y

 reduce(y, y) -> y

 Automatically distributed amongst the cluster and worker 

threads inside the nodes



Distributed Code

double sumY2 = new MRTask2(){

double map(double x){

return x*x;

}

double reduce(double x, double y){

return x + y;

}

}.doAll(vec);



Demo
GLM



CTR Prediction Contest

 Kaggle contest- clickthrought rate prediction

 Data

 11 days worth of clickthrough data from Avazu

 ~ 8GB, ~ 44 million rows

 Mostly categoricals

 Large number of features (predictors), good fit for 

linear models



Linear Regression

 Least Squares Fit



Logistic Regression

 Least Squares Fit



Logistic Regression

 GLM Fit



Generalized Linear Modelling

 Solved by iterative reweighted least squares

 Computation in two parts

 Compute 𝑋𝑇𝑋

 Compute inverse of 𝑋𝑇𝑋 (Cholesky Decomposition)

 Assumption

 Number of rows >> number of cols

 (use strong rules to filter out inactive columns)

 Complexity

 Nrows * Ncols2/N*P +Ncols3/P



Generalized Linear Modelling

 Solved by iterative reweighted least squares

 Computation in two parts

 Compute 𝑋𝑇𝑋

 Compute inverse of 𝑋𝑇𝑋 (Cholesky Decomposition)

 Assumption

 Number of rows >> number of cols

 (use strong rules to filter out inactive columns)

 Complexity

 Nrows * Ncols2/N*P +Ncols3/P

Distributed

Single Node



Random Forest



How Big is Big?

 Data set size is relative

 Does the data fit in one machine’s RAM

 Does the data fit in one machine’s disk

 Does the data fit in several machine’s RAM

 Does the data fit in several machine’s disk



Why so Random?

 Introducing

 Random Forest

 Bagging

 Out of bag error estimate

 Confusion matrix

 Leo Breiman: Random Forests. Machine Learning, 2001



Classification Trees

 Consider a supervised learning problem with a simple 

data set with two classes and two features x in [1,4] 

and y in [5,8]

 We can build a classification tree to predict of new 

observations



Classification Trees

 Classification trees often overfit the data



Random Forest

 Overfiting is avoided by building multiple randomized 
and far less precise (partial) trees

 All these trees in fact underfit

 Result is obtained by a vote over the ensemble of the 
decision trees 

 Different voting strategies possible



Random Forest

 Each tree sees a different part of the training set and 

captures the information it contains



Random Forest 

 Each tree sees a different random selection of the 

training set (without replacement)

 Bagging

 At each split, a random subset of features is selected 

over which the decision should maximize gain

 Gini Impurity

 Information gain
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Validating the trees

 We can exploit the fact that each tree sees only a 

subset of the training data

 Each tree in the forest is validated on the training data 

it has never seen 
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Validating the trees

 We can exploit the fact that each tree sees only a 

subset of the training data

 Each tree in the forest is validated on the training data 

it has never seen 

Errors

(Out of Bag Error)



Validating the Forest

 Confusion Matrix is build for the forest and training data

 During a vote, trees trained on the current row are 

ignored

actual/

assigned
Red Green

Red 15 5 33%

Green 1 10 10%



Distributing and Parallelizing

 How do we sample?

 How do we select splits?

 How do we estimate OOBE?



Distributing and Parallelizing

 How do we sample?

 How do we select splits?

 How do we estimate OOBE?

 When random data sample fits in memory, RF building 

parallelize extremely well

 Parallel tree building is trivial

 Validation requires trees to be collocated with data

 Moving trees to data

 (large training datasets can produce huge trees!)



Random Forest in H2O

 Trees must be built in parallel over randomized data 

samples

 To calculate gains, feature sets must be sorted at each 

split



Random Forest in H2O

 Trees must be built in parallel over randomized data 

samples

 H2O reads data and distributes them over the nodes

 Each node builds trees in parallel on a sample of the data 

that fits locally

 To calculate gains, feature sets must be sorted at each 

split



Random Forest in H2O

 Trees must be built in parallel over randomized data 

samples

 To calculate gains, feature sets must be sorted at each 

split

 the values are discretized -> instead of sorting features 

are represented as arrays of their cardinality

 { (2, red), (3.4, red), (5, green), (6.1, green) }

becomes

{ (1, red), (2, red), (3, green), (4, green) }

 But trees can be very large (~100k splits)



Random Forest in H2O

 Trees must be built in parallel over randomized data 

samples

 To calculate gains, feature sets must be sorted at each 

split

 the values are discretized -> instead of sorting features 

are represented as arrays of their cardinality

 { (2, red), (3.4, red), (5, green), (6.1, green) }

becomes

{ (1, red), (2, red), (3, green), (4, green) }

 But trees can be very large (~100k splits)

Binning



Lessons Learned

 Java Random is not really random

 Small seeds give very bad random sequences resulting in 

poor RF performance

 And we of course started with a deterministic seed of 42:)

 But determinism is important for debugging 

 Linux kernel drops TCP connections silently when under 

stress

 Sender opens connection, sends, closes w/o exceptions, 

but receiver never sees the data

 Need to recycle TCP connections and use TCP reliable 

delayer

 Good Diagnostics to detect hardware issues is needed

 Specific UDP packet drops with 100% chance



Demo
Continued



Q & A
Thank you




