

Fast Analytics on

Big Data with H20
0xdata.com, h2o.ai

Tomas Nykodym, Petr Maj

Team

About H2O and 0xdata

 H2O is a platform for distributed in memory predictive

analytics and machine learning

 Pure Java, Apache v2 Open Source

 Easy deployment with a single jar, automatic cloud

discovery

 https://github.com/0xdata/h2o

 https://github.com/0xdata/h2o-dev

 Google group h2ostream

 ~15000 commits over two years, very active developers

Overview

 H2O Architecture

 GLM on H2O

 demo

 Random Forest

H2O Architecture

Practical Data Science

 Data scientists are not necessarily trained as computer

scientists

 A “typical” data science team is about 20% CS, working

mostly on UI and visualization tools

 An example is Netflix

 Statisticians prototype in R

 When done, developers recode the code in Java and

Hadoop

What we want from modern

machine learning platform

Requirements Solution

Fast & Interactive In-Memory

Big Data (no sampling) Distributed

Flexibility Open Source

Extensibility API/SDK

Portability Java, REST/JSON

Infrastructure Cloud or On-Premise

Hadoop or Private Cluster

Core

H2O Architecture

Distributed in memory K/V Store

Column Compressed Data

Memory Managed

Distributed Tasks

Map/Reduce

GBM, Random Forest,

GLM, PCA, K-Means,

Deep Learning

Algorithms

REST API, R, Python,

Web Interface

Frontends

HDFS, S3, NFS, Web Upload

Data Sources

Distributed Data Taxonomy

Vector

Distributed Data Taxonomy

Vector
The vector may be very large ~ billions of

rows

- Store compressed (often 2-4x)

- Access as Java primitives with on the fly

decompression

- Support fast Random access

- Modifiable with Java memory semantics

Distributed Data Taxonomy

Vector Large vectors must be distributed over

multiple JVMs

- Vector is split into chunks

- Chunk is a unit of parallel access

- Each chunk ~ 1000 elements

- Per chunk compression

- Homed to a single node

- Can be spilled to disk

- GC very cheap

Distributed Data Taxonomy

age sex zip ID

A row is always

stored in a single

JVM

Distributed data frame

- Similar to R frame

- Adding and removing

columns is cheap

- Row-wise access

Distributed Data Taxonomy

 Elem – a java double

 Chunk – a collection of thousands to millions of elems

 Vec – a collection of Chunks

 Frame – a collection of Vecs

 Row i - i’th elements of all the vecs in a frame

Distributed Fork/Join

JVM

task

JVM

task

JVM

task

JVM

task

JVM

task

Distributed Fork/Join

JVM

task

JVM

task

JVM

task

JVM

task

JVM

task

Task is distributed in a tree

pattern

- Results are reduced at

each inner node

- Returns with a single

result when all subtasks

done

Distributed Fork/Join

JVM

task

JVM

task

task task

tasktaskchunk

chunk chunk

- On each node the task is parallelized over home chunks

using Fork/Join

- No blocked thread using continuation passing style

Distributed Code

 Simple tasks

 Executed on a single remote node

 Map/Reduce

 Two operations

 map(x) -> y

 reduce(y, y) -> y

 Automatically distributed amongst the cluster and worker

threads inside the nodes

Distributed Code

double sumY2 = new MRTask2(){

double map(double x){

return x*x;

}

double reduce(double x, double y){

return x + y;

}

}.doAll(vec);

Demo
GLM

CTR Prediction Contest

 Kaggle contest- clickthrought rate prediction

 Data

 11 days worth of clickthrough data from Avazu

 ~ 8GB, ~ 44 million rows

 Mostly categoricals

 Large number of features (predictors), good fit for

linear models

Linear Regression

 Least Squares Fit

Logistic Regression

 Least Squares Fit

Logistic Regression

 GLM Fit

Generalized Linear Modelling

 Solved by iterative reweighted least squares

 Computation in two parts

 Compute 𝑋𝑇𝑋

 Compute inverse of 𝑋𝑇𝑋 (Cholesky Decomposition)

 Assumption

 Number of rows >> number of cols

 (use strong rules to filter out inactive columns)

 Complexity

 Nrows * Ncols2/N*P +Ncols3/P

Generalized Linear Modelling

 Solved by iterative reweighted least squares

 Computation in two parts

 Compute 𝑋𝑇𝑋

 Compute inverse of 𝑋𝑇𝑋 (Cholesky Decomposition)

 Assumption

 Number of rows >> number of cols

 (use strong rules to filter out inactive columns)

 Complexity

 Nrows * Ncols2/N*P +Ncols3/P

Distributed

Single Node

Random Forest

How Big is Big?

 Data set size is relative

 Does the data fit in one machine’s RAM

 Does the data fit in one machine’s disk

 Does the data fit in several machine’s RAM

 Does the data fit in several machine’s disk

Why so Random?

 Introducing

 Random Forest

 Bagging

 Out of bag error estimate

 Confusion matrix

 Leo Breiman: Random Forests. Machine Learning, 2001

Classification Trees

 Consider a supervised learning problem with a simple

data set with two classes and two features x in [1,4]

and y in [5,8]

 We can build a classification tree to predict of new

observations

Classification Trees

 Classification trees often overfit the data

Random Forest

 Overfiting is avoided by building multiple randomized
and far less precise (partial) trees

 All these trees in fact underfit

 Result is obtained by a vote over the ensemble of the
decision trees

 Different voting strategies possible

Random Forest

 Each tree sees a different part of the training set and

captures the information it contains

Random Forest

 Each tree sees a different random selection of the

training set (without replacement)

 Bagging

 At each split, a random subset of features is selected

over which the decision should maximize gain

 Gini Impurity

 Information gain

Random Forest

 Each tree sees a different random selection of the

training set (without replacement)

 Bagging

 At each split, a random subset of features is selected

over which the decision should maximize gain

 Gini Impurity

 Information gain

Random Forest

 Each tree sees a different random selection of the

training set (without replacement)

 Bagging

 At each split, a random subset of features is selected

over which the decision should maximize gain

 Gini Impurity

 Information gain

Random Forest

 Each tree sees a different random selection of the

training set (without replacement)

 Bagging

 At each split, a random subset of features is selected

over which the decision should maximize gain

 Gini Impurity

 Information gain

Validating the trees

 We can exploit the fact that each tree sees only a

subset of the training data

 Each tree in the forest is validated on the training data

it has never seen

Validating the trees

 We can exploit the fact that each tree sees only a

subset of the training data

 Each tree in the forest is validated on the training data

it has never seen
Original training

data

Validating the trees

 We can exploit the fact that each tree sees only a

subset of the training data

 Each tree in the forest is validated on the training data

it has never seen

Data used to

construct the

tree

Validating the trees

 We can exploit the fact that each tree sees only a

subset of the training data

 Each tree in the forest is validated on the training data

it has never seen

Data used to validate

the tree

Validating the trees

 We can exploit the fact that each tree sees only a

subset of the training data

 Each tree in the forest is validated on the training data

it has never seen

Errors

(Out of Bag Error)

Validating the Forest

 Confusion Matrix is build for the forest and training data

 During a vote, trees trained on the current row are

ignored

actual/

assigned
Red Green

Red 15 5 33%

Green 1 10 10%

Distributing and Parallelizing

 How do we sample?

 How do we select splits?

 How do we estimate OOBE?

Distributing and Parallelizing

 How do we sample?

 How do we select splits?

 How do we estimate OOBE?

 When random data sample fits in memory, RF building

parallelize extremely well

 Parallel tree building is trivial

 Validation requires trees to be collocated with data

 Moving trees to data

 (large training datasets can produce huge trees!)

Random Forest in H2O

 Trees must be built in parallel over randomized data

samples

 To calculate gains, feature sets must be sorted at each

split

Random Forest in H2O

 Trees must be built in parallel over randomized data

samples

 H2O reads data and distributes them over the nodes

 Each node builds trees in parallel on a sample of the data

that fits locally

 To calculate gains, feature sets must be sorted at each

split

Random Forest in H2O

 Trees must be built in parallel over randomized data

samples

 To calculate gains, feature sets must be sorted at each

split

 the values are discretized -> instead of sorting features

are represented as arrays of their cardinality

 { (2, red), (3.4, red), (5, green), (6.1, green) }

becomes

{ (1, red), (2, red), (3, green), (4, green) }

 But trees can be very large (~100k splits)

Random Forest in H2O

 Trees must be built in parallel over randomized data

samples

 To calculate gains, feature sets must be sorted at each

split

 the values are discretized -> instead of sorting features

are represented as arrays of their cardinality

 { (2, red), (3.4, red), (5, green), (6.1, green) }

becomes

{ (1, red), (2, red), (3, green), (4, green) }

 But trees can be very large (~100k splits)

Binning

Lessons Learned

 Java Random is not really random

 Small seeds give very bad random sequences resulting in

poor RF performance

 And we of course started with a deterministic seed of 42:)

 But determinism is important for debugging

 Linux kernel drops TCP connections silently when under

stress

 Sender opens connection, sends, closes w/o exceptions,

but receiver never sees the data

 Need to recycle TCP connections and use TCP reliable

delayer

 Good Diagnostics to detect hardware issues is needed

 Specific UDP packet drops with 100% chance

Demo
Continued

Q & A
Thank you

