
Akka Streams
Dr. Roland Kuhn

@rolandkuhn — Typesafe

Why Streams?

• processing big data with finite memory

• real-time data processing (CEP)

• serving numerous clients simultaneously with
bounded resources (IoT, streaming HTTP APIs)

2

3

What is a Stream?

• ephemeral, time-dependent sequence of elements

• possibly unbounded in length

• therefore focusing on transformations

«You cannot step twice into the same stream.
For as you are stepping in, other waters are ever

flowing on to you.» — Heraclitus

Declaring a Stream Topology

4

Declaring a Stream Topology

5

Declaring a Stream Topology

6

Declaring a Stream Topology

7

Declaring a Stream Topology

8

Declaring a Stream Topology

9

Declaring a Stream Topology

10

Declaring and Running a Stream

11

val upper = Source(Iterator from 0).take(10)
val lower = Source(1.second, 1.second, () => Tick)

val source = Source[(Int, Tick)]() { implicit b =>
 val zip = Zip[Int, Tick]
 val out = UndefinedSink[(Int, Tick)]

 upper ~> zip.left ~> out
 lower ~> zip.right
 out
}
val flow = Flow[(Int, Tick)].map{ case (x, _) => s"tick $x" }
val sink = Sink.foreach(println)

val future = source.connect(flow).runWith(sink)

Declaring and Running a Stream

12

val upper = Source(Iterator from 0).take(10)
val lower = Source(1.second, 1.second, () => Tick)

val source = Source[(Int, Tick)]() { implicit b =>
 val zip = Zip[Int, Tick]
 val out = UndefinedSink[(Int, Tick)]

 upper ~> zip.left ~> out
 lower ~> zip.right
 out
}
val flow = Flow[(Int, Tick)].map{ case (x, _) => s"tick $x" }
val sink = Sink.foreach(println)

val future = source.connect(flow).runWith(sink)

Declaring and Running a Stream

13

val upper = Source(Iterator from 0).take(10)
val lower = Source(1.second, 1.second, () => Tick)

val source = Source[(Int, Tick)]() { implicit b =>
 val zip = Zip[Int, Tick]
 val out = UndefinedSink[(Int, Tick)]

 upper ~> zip.left ~> out
 lower ~> zip.right
 out
}
val flow = Flow[(Int, Tick)].map{ case (x, _) => s"tick $x" }
val sink = Sink.foreach(println)

val future = source.connect(flow).runWith(sink)

Materialization

• Akka Streams separate the what from the how
• declarative Source/Flow/Sink DSL to create blueprint

• FlowMaterializer turns this into running Actors

• this allows alternative materialization strategies
• optimization

• verification / validation

• cluster deployment

• only Akka Actors for now, but more to come!

14

Stream Sources

• org.reactivestreams.Publisher[T]
• org.reactivestreams.Subscriber[T]
• Iterator[T] / Iterable[T]
• Code block (function that produces Option[T])

• scala.concurrent.Future[T]
• TickSource

• ActorPublisher

• singleton / empty / failed

• … plus write your own (fully extensible)

15

Stream Sinks

• org.reactivestreams.Publisher[T]
• org.reactivestreams.Subscriber[T]
• ActorSubscriber

• scala.concurrent.Future[T]
• blackhole / foreach / fold / onComplete

• … or create your own

16

Linear Stream Transformations

• Deterministic (like for collections)
• map, filter, collect, grouped, drop, take, groupBy, …

• Time-Based
• takeWithin, dropWithin, groupedWithin, …

• Rate-Detached
• expand, conflate, buffer, …

• asynchronous
• mapAsync, mapAsyncUnordered, flatten, …

17

Nonlinear Stream Transformations

• Fan-In
• merge, concat, zip, …

• Fan-Out
• broadcast, route, balance, unzip, …

18

Why does this work?

19

val upper = Source(Iterator from 0) // infinitely fast
val lower = Source(1.second, 1.second, () => Tick)

val source = Source[(Int, Tick)]() { implicit b =>
 val zip = Zip[Int, Tick]
 val out = UndefinedSink[(Int, Tick)]

 upper ~> zip.left ~> out
 lower ~> zip.right
 out
}
val flow = Flow[(Int, Tick)].map{ case (x, _) => s"tick $x" }
val sink = Sink.foreach(println)

val future = source.connect(flow).runWith(sink)

Reactive Traits

Back-Pressure:

the Reactive Streams Initiative

Participants

• Engineers from
• Netflix

• Oracle

• Pivotal

• Red Hat

• Twitter

• Typesafe
• Individuals like Doug Lea and Todd Montgomery

22

The Motivation

• all participants had the same basic problem

• all are building tools for their community

• a common solution benefits everybody

• interoperability to make best use of efforts

23

Recipe for Success

• minimal interfaces

• rigorous specification of semantics

• full TCK for verification of implementation

• complete freedom for many idiomatic APIs

24

The Meat

25

trait Publisher[T] {
 def subscribe(sub: Subscriber[T]): Unit
}
trait Subscription {
 def request(n: Long): Unit
 def cancel(): Unit
}
trait Subscriber[T] {
 def onSubscribe(s: Subscription): Unit
 def onNext(elem: T): Unit
 def onError(thr: Throwable): Unit
 def onComplete(): Unit
}

Supply and Demand

• data items flow downstream

• demand flows upstream

• data items flow only when there is demand
• recipient is in control of incoming data rate

• data in flight is bounded by signaled demand

26

Publisher Subscriber

data

demand

Dynamic Push–Pull

• “push” behavior when consumer is faster

• “pull” behavior when producer is faster

• switches automatically between these

• batching demand allows batching data

27

Publisher Subscriber

data

demand

Explicit Demand: Tailored Flow Control

28

demand

data

splitting the data means merging the demand

Explicit Demand: Tailored Flow Control

29

merging the data means splitting the demand

Reactive Streams

• asynchronous non-blocking data flow

• asynchronous non-blocking demand flow

• minimal coordination and contention

• message passing allows for distribution

• across applications

• across nodes

• across CPUs

• across threads

• across actors

30

Interoperability is King

A fully working example

32

ActorSystem system = ActorSystem.create("InteropTest");
FlowMaterializer mat = FlowMaterializer.create(system);
RxRatpack.initialize();

EmbeddedApp.fromHandler(ctx -> {
Integer[] ints = new Integer[10];
for (int i = 0; i < ints.length; ++i) {

ints[i] = i;
}
// RxJava Observable
Observable<Integer> intObs = Observable.from(ints);
// Reactive Streams Publisher
Publisher<Integer> intPub = RxReactiveStreams.toPublisher(intObs);
// Akka Streams Source
Source<String> stringSource = Source.from(intPub).map(Object::toString);
// Reactive Streams Publisher
Publisher<String> stringPub = stringSource.runWith(Sink.<String>fanoutPublisher(1, 1), mat);
// Reactor Stream
Stream<String> linesStream = Streams.create(stringPub).map(i -> i + "\n");
// and now render the HTTP response using Ratpack
ctx.render(ResponseChunks.stringChunks(linesStream));

});

https://github.com/rkuhn/ReactiveStreamsInterop

https://github.com/rkuhn/ReactiveStreamsInterop

When can we have it?

• Sample used pre-release versions:
• reactive-streams 0.4.0

• RxJava 1.0.0-rc.8 with rxjava-reactive-streams 0.3.0

• reactor-core 2.0.0.M1

• ratpack-core 0.9.10

• akka-stream-experimental 0.10-M1

• stable versions expected within the next months

• Reactive Streams 1.0 some weeks away

33

Outlook

• Akka HTTP (successor of Spray.io)
• fully stream-based

• Java and Scala DSLs

• client and server

• more stream-based APIs
• file I/O (on JRE 7 and higher)

• database drivers (community developed)

• Akka Persistence with streams of events

34

Advertisement:

Berlin Scala User Group — Hack Sequel
Nov 14–16, 2014

There will be T-Shirts, catering and a prize!

©Typesafe 2014 – All Rights Reserved

