
Apache Mahout's new DSL for
Distributed Machine Learning

Sebastian Schelter

GOTO Berlin

11/06/2014

Overview

• Apache Mahout: Past & Future

• A DSL for Machine Learning

• Example

• Under the covers

• Distributed computation of XTX

Overview

• Apache Mahout: Past & Future

• A DSL for Machine Learning

• Example

• Under the covers

• Distributed computation of XTX

Apache Mahout: History

• library for scalable machine learning (ML)

• started six years ago as ML on MapReduce

• focus on popular ML problems and algorithms
– Collaborative Filtering

„find interesting items for users based on past behavior“
– Classification

„learn to categorize objects“
– Clustering

„find groups of similar objects“
– Dimensionality Reduction

„find a low-dimensional representation of the data“

• large userbase (e.g. Adobe, AOL, Accenture, Foursquare, Mendeley, Researchgate,
Twitter)

Background: MapReduce

• simple paradigm for distributed processing
(proposed by Google)

• user implements two functions map and
reduce

• system executes program in parallel,
scales to clusters with thousands of machines

• popular open source implementation:
Apache Hadoop

Background: MapReduce

Apache Mahout: Problems

• MapReduce not well suited for ML
– slow execution, especially for iterations
– constrained programming model makes code

hard to write, read and adjust
– lack of declarativity
– lots of handcoded joins necessary

• → Abandonment of MapReduce
– will reject new MapReduce implementations
– widely used „legacy“ implementations will be maintained

• → „Reboot“ with a new DSL

Overview

• Apache Mahout: Past & Future

• A DSL for Machine Learning

• Example

• Under the covers

• Distributed computation of XTX

Requirements for an ideal ML environment

1. R/Matlab-like semantics
– type system that covers linear algebra and statistics

2. Modern programming language qualities
– functional programming

– object oriented programming

– scriptable and interactive

3. Scalability
– automatic distribution and

parallelization with sensible
performance

Requirements for an ideal ML environment

1. R/Matlab-like semantics
– type system that covers linear algebra and statistics

2. Modern programming language qualities
– functional programming

– object oriented programming

– scriptable and interactive

3. Scalability
– automatic distribution and

parallelization with sensible
performance

Requirements for an ideal ML environment

1. R/Matlab-like semantics
– type system that covers linear algebra and statistics

2. Modern programming language qualities
– functional programming

– object oriented programming

– scriptable and interactive

3. Scalability
– automatic distribution and

parallelization with sensible
performance

Scala DSL

• Scala as programming/scripting environment

• R-like DSL :

val G = B %*% B.t - C - C.t + (ksi dot ksi) * (s_q cross s_q)

• Declarativity!

• Algebraic expression optimizer for distributed linear algebra
– provides a translation layer to distributed engines

– currently supports Apache Spark only

– might support Apache Flink in the future

q

T

q

TTT
ssCCBBG

Data Types

• Scalar real values

• In-memory vectors
– dense

– 2 types of sparse

• In-memory matrices
– sparse and dense

– a number of specialized matrices

• Distributed Row Matrices (DRM)
– huge matrix, partitioned by rows

– lives in the main memory of the cluster

– provides small set of parallelized

operations

– lazily evaluated operation execution

val x = 2.367

val v = dvec(1, 0, 5)

val w =

svec((0 -> 1)::(2 -> 5):: Nil)

val A = dense((1, 0, 5),

(2, 1, 4),

(4, 3, 1))

val drmA = drmFromHDFS(...)

Features (1)

• Matrix, vector, scalar operators:
in-memory, out-of-core

• Slicing operators

• Assignments (in-memory only)

• Vector-specific

• Summaries

drmA %*% drmB

A %*% x

A.t %*% drmB

A * B

A(5 until 20, 3 until 40)

A(5, ::); A(5, 5); x(a to b)

A(5, ::) := x

A *= B

A -=: B; 1 /:= x

x dot y; x cross y

A.nrow; x.length;

A.colSums; B.rowMeans

x.sum; A.norm

Features (2)

• solving linear systems

• in-memory decompositions

• out-of-core decompositions

• caching of DRMs

val x = solve(A, b)

val (inMemQ, inMemR) = qr(inMemM)

val ch = chol(inMemM)

val (inMemV, d) = eigen(inMemM)

val (inMemU, inMemV, s) = svd(inMemM)

val (drmQ, inMemR) = thinQR(drmA)

val (drmU, drmV, s) =

dssvd(drmA, k = 50, q = 1)

val drmA_cached = drmA.checkpoint()

drmA_cached.uncache()

Overview

• Apache Mahout: Past & Future

• A DSL for Machine Learning

• Example

• Under the covers

• Distributed computation of XTX

Cereals

Name protein fat carbo sugars rating

Apple Cinnamon Cheerios 2 2 10.5 10 29.509541

Cap‘n‘Crunch 1 2 12 12 18.042851

Cocoa Puffs 1 1 12 13 22.736446

Froot Loops 2 1 11 13 32.207582

Honey Graham Ohs 1 2 12 11 21.871292

Wheaties Honey Gold 2 1 16 8 36.187559

Cheerios 6 2 17 1 50.764999

Clusters 3 2 13 7 40.400208

Great Grains Pecan 3 3 13 4 45.811716

http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html

Linear Regression

• Assumption: target variable y generated by linear combination of feature
matrix X with parameter vector β, plus noise ε

• Goal: find estimate of the parameter
vector β that explains the data well

• Cereals example

X = weights of ingredients
y = customer rating

 Xy

Data Ingestion

• Usually: load dataset as DRM from a distributed filesystem:

val drmData = drmFromHdfs(...)

• ‚Mimick‘ a large dataset for our example:

val drmData = drmParallelize(dense(

(2, 2, 10.5, 10, 29.509541), // Apple Cinnamon Cheerios

(1, 2, 12, 12, 18.042851), // Cap'n'Crunch

(1, 1, 12, 13, 22.736446), // Cocoa Puffs

(2, 1, 11, 13, 32.207582), // Froot Loops

(1, 2, 12, 11, 21.871292), // Honey Graham Ohs

(2, 1, 16, 8, 36.187559), // Wheaties Honey Gold

(6, 2, 17, 1, 50.764999), // Cheerios

(3, 2, 13, 7, 40.400208), // Clusters

(3, 3, 13, 4, 45.811716)), // Great Grains Pecan

numPartitions = 2)

Data Preparation

• Cereals example: target variable y is customer rating, weights of
ingredients are features X

• extract X as DRM by slicing,
fetch y as in-core vector

val drmX = drmData(::, 0 until 4)

val y = drmData.collect(::, 4)

8117164541333

4002084071323

7649995011726

1875593681612

87129221111221

20758232131112

73644622131211

04285118121221

509541291051022

.

.

.

.

.

.

.

.

..

drmX y

Estimating β

• Ordinary Least Squares: minimizes the sum of residual squares between
true target variable and prediction of target variable

• Closed-form expression for estimation of ß as

• Computing XTX and XTy is as simple as typing the formulas:

val drmXtX = drmX.t %*% drmX

val drmXty = drmX %*% y

yXXX
TT 1

)(ˆ

Estimating β

• Solve the following linear system to get least-squares estimate of ß

• Fetch XTX and XTy onto the driver and use an in-core solver
– assumes XTX fits into memory

– uses analogon to R’s solve() function

val XtX = drmXtX.collect

val Xty = drmXty.collect(::, 0)

val betaHat = solve(XtX, Xty)

yXXX
TT

̂

Estimating β

• Solve the following linear system to get least-squares estimate of ß

• Fetch XTX and XTy onto the driver and use an in-memory solver
– assumes XTX fits into memory

– uses analogon to R’s solve() function

val XtX = drmXtX.collect

val Xty = drmXty.collect(::, 0)

val betaHat = solve(XtX, Xty)

yXXX
TT

̂

→ We have implemented distributed linear regression!
(would need to add a bias term in a real implementation)

Overview

• Apache Mahout: Past & Future

• A DSL for Machine Learning

• Example

• Under the covers

• Distributed computation of XTX

Underlying systems

• currently: prototype on Apache Spark
– fast and expressive cluster

computing system
– general computation graphs,

in-memory primitives, rich API,
interactive shell

• future: add Apache Flink
– database-inspired distributed

processing engine
– emerged from research by

TU Berlin, HU Berlin, HPI
– functionality similar to Apache Spark, adds data flow

optimization and efficient out-of-core execution

Runtime & Optimization

• Execution is defered, user
composes logical operators

• Computational actions implicitly
trigger optimization (= selection
of physical plan) and execution

• Optimization factors: size of operands, orientation of
operands, partitioning, sharing of computational paths

val C = X.t %*% X

I.writeDrm(path);

val inMemV =

(U %*% M).collect

Optimization Example

• Computation of XTX in example

• Naïve execution

1st pass: transpose A
(requires repartitioning of A)

2nd pass: multiply result with A
(expensive, potentially requires
repartitioning again)

• Logical optimization:

rewrite plan to use specialized
logical operator for
Transpose-Times-Self matrix
multiplication

val drmXtX = drmX.t %*% drmX

Optimization Example

• Computation of XTX in example

• Naïve execution

1st pass: transpose X
(requires repartitioning of X)

2nd pass: multiply result with A
(expensive, potentially requires
repartitioning again)

• Logical optimization:

rewrite plan to use specialized
logical operator for
Transpose-Times-Self matrix
multiplication

val drmXtX = drmX.t %*% drmX

Transpose

X

Optimization Example

• Computation of XTX in example

• Naïve execution

1st pass: transpose X
(requires repartitioning of X)

2nd pass: multiply result with X
(expensive, potentially requires
repartitioning again)

• Logical optimization:

rewrite plan to use specialized
logical operator for
Transpose-Times-Self matrix
multiplication

val drmXtX = drmX.t %*% drmX

Transpose

MatrixMult

X X

XTX

Optimization Example

• Computation of XTX in example

• Naïve execution

1st pass: transpose X
(requires repartitioning of X)

2nd pass: multiply result with X
(expensive, potentially requires
repartitioning again)

• Logical optimization

Optimizer rewrites plan to use
specialized logical operator for
Transpose-Times-Self matrix
multiplication

val drmXtX = drmX.t %*% drmX

Transpose

MatrixMult

X X

XTX

Transpose-
Times-Self

X

XTX

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X

m

i

T

ii

T
xxXX

0

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X

m

i

T

ii

T
xxXX

0

XT

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X

m

i

T

ii

T
xxXX

0

x

X XT

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X

m

i

T

ii

T
xxXX

0

x = x +

X XT x1• x1•
T

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X

m

i

T

ii

T
xxXX

0

x = x + +x

X XT x1• x1•
T x2• x2•

T

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X

m

i

T

ii

T
xxXX

0

x = x + + +x x

X XT x1• x1•
T x2• x2•

T x3• x3•
T

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X

m

i

T

ii

T
xxXX

0

x = x + + +x x x

X XT x1• x1•
T x2• x2•

T x3• x3•
T x4• x4•

T

Overview

• Apache Mahout: Past & Future

• A DSL for Machine Learning

• Example

• Under the covers

• Distributed computation of XTX

Physical operators for
Transpose-Times-Self

• Two physical operators (concrete implementations)
available for Transpose-Times-Self operation

– standard operator “AtA”

– operator “AtA_slim”, specialized
implementation for “tall & skinny”
matrices (many rows, few columns)

• Optimizer must choose
– currently: depends on user-defined

threshold for number of columns

– ideally: cost based decision, dependent on
estimates of intermediate result sizes

Transpose-
Times-Self

X

XTX

Physical operator „AtA“

1100

0101

0111

X

X2

 1100

Physical operator „AtA“

1100

0101

0111

X1

X

worker 1

worker 2

0101

0111

X2

 1100

Physical operator „AtA“

1100

0101

0111

X1

X

worker 1

worker 2

0101

0111

for 1st partition

for 1st partition

X2

 1100

Physical operator „AtA“

1100

0101

0111

X1

X

worker 1

worker 2

0101

0111

 0111
1

1

 1100
0

0

for 1st partition

for 1st partition

X2

 1100

Physical operator „AtA“

1100

0101

0111

X1

X

worker 1

worker 2

0101

0111

 0111
1

1

 1100
0

0

for 1st partition

for 1st partition

 0101
0

1

X2

 1100

Physical operator „AtA“

1100

0101

0111

X1

X

worker 1

worker 2

0101

0111

 0111
1

1

 1100
0

0

for 1st partition

for 1st partition

 0101
0

1

for 2nd partition

for 2nd partition

A2

 1100

Physical operator AtA

1100

0101

0111

A1

A

worker 1

worker 2

0101

0111

 0111
1

1

 1100
0

0

for 1st partition

for 1st partition

 0101
0

1

 0111
0

1

for 2nd partition

 1100
1

1

for 2nd partition

X2

 1100

Physical operator „AtA“

1100

0101

0111

X1

X

worker 1

worker 2

0101

0111

 0111
1

1

 1100
0

0

for 1st partition

for 1st partition

 0101
0

1

 0111
0

1

for 2nd partition

 0101
0

1

 1100
1

1

for 2nd partition

X2

 1100

Physical operator „AtA“

1100

0101

0111

X1

X

worker 1

worker 2

0101

0111

0111

0111

0000

0000

for 1st partition

for 1st partition

0000

0101

0000

0111

for 2nd partition

0000

0101

1100

1100

for 2nd partition

X2

 1100

Physical operator „AtA“

1100

0101

0111

X1

X

worker 1

worker 2

0101

0111

0111

0111

0000

0000

for 1st partition

for 1st partition

0000

0101

0000

0111

for 2nd partition

0000

0101

1100

1100

for 2nd partition

0111

0212

worker 3

1100

1312

worker 4

∑

∑

XTX

Physical operator „AtA_slim“

1100

0101

0111

X

X2

 1100

Physical operator „AtA_slim“

1100

0101

0111

X1

X

worker 1

worker 2

0101

0111

X2
TX2X2

 1100

1

11

000

0000

Physical operator „AtA_slim“

1100

0101

0111

X1
TX1X1

X

worker 1

worker 2

0101

0111

0

02

011

0212

X2
TX2X2

 1100

1

11

000

0000

Physical operator „AtA_slim“

1100

0101

0111

X1
TX1X1

X XTX

worker 1

worker 2

X1
TX1 + X2

TX2

driver

0101

0111

0

02

011

0212

1100

1312

0111

0212

Summary

• MapReduce outdated as abstraction for
distributed machine learning

• R/Matlab-like DSL for declarative
implementation of algorithms

• Automatic compilation, optimization and
parallelization of programs written in this DSL

• Execution on novel distributed engines like
Apache Spark and Apache Flink

Thank you. Questions?

Tutorial for playing with the new Mahout DSL:
http://mahout.apache.org/users/sparkbindings/play-with-shell.html

Apache Flink Meetup in Berlin:
http://www.meetup.com/Apache-Flink-Meetup/

Follow me on twitter
@sscdotopen

http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/

