@)

{Sehone

Apache Mahout's new DSL for
Distributed Machine Learning

Sebastian Schelter
GOTO Berlin
11/06/2014

Overview

Apache Mahout: Past & Future
A DSL for Machine Learning
Example

Under the covers

Distributed computation of X™X

Overview

Apache Mahout: Past & Future
A DSL for Machine Learning
Example

Under the covers

Distributed computation of X™X

Apache Mahout: History

library for scalable machine learning (ML)

started six years ago as ML on MapReduce

focus on popular ML problems and algorithms

— Collaborative Filtering
LJind interesting items for users based on past behavior”

— Classification
,learn to categorize objects”
— Clustering
,Jind groups of similar objects”
— Dimensionality Reduction
Lfind a low-dimensional representation of the data”

large userbase (e.g. Adobe, AOL, Accenture, Foursquare, Mendeley, Researchgate,
Twitter)

Background: MapReduce

simple paradigm for distributed processing
(proposed by Google)

user implements two functions map and
reduce

system executes program in parallel,
scales to clusters with thousands of machines

popular open source implementation:
Apache Hadoop

Background: MapReduce

Apache Mahout: Problems

 MapReduce not well suited for ML
— slow execution, especially for iterations

— constrained programming model makes code
hard to write, read and adjust

— lack of declarativity
— lots of handcoded joins necessary

= Abandonment of MapReduce
— will reject new MapReduce implementations
— widely used ,legacy” implementations will be maintained

e - ,Reboot” with a new DSL

Overview

Apache Mahout: Past & Future
A DSL for Machine Learning
Example

Under the covers

Distributed computation of X™X

Requirements for an ideal ML environment

1. R/Matlab-like semantics

— type system that covers linear algebra and statistics

2. Modern programming language qualities
— functional programming
— object oriented programming
— scriptable and interactive

3. Scalability

— automatic distribution and
parallelization with sensible
performance

Requirements for an ideal ML environment

1. R/Matlab-like semantics

— type system that covers linear algebra and statistics

2. Modern programming language qualities

— functional programming
— object oriented programming

— scriptable and interactive ! scala

3. Scalability

— automatic distribution and
parallelization with sensible
performance

Requirements for an ideal ML environment

1. R/Matlab-like semantics
— type system that covers linear algebra and statistics

2. Modern programming language qualities

— functional programming
— object oriented programming

— scriptable and interactive ! Scala

3. Scalability

— automatic distribution and
parallelization with sensible
performance spor

Scala DSL

Scala as programming/scripting environment

R-like DSL :
T T T T
G=BB -C-C +¢5 &5, s,

val G

B $*% B.t - C - C.t + (ksi dot ksi) * (s_g cross s_q)

Declarativity!

Algebraic expression optimizer for distributed linear algebra
— provides a translation layer to distributed engines
— currently supports Apache Spark only
— might support Apache Flink in the future

Data Types

Scalar real values

In-memory vectors
— dense
— 2 types of sparse

In-memory matrices
— sparse and dense
— anumber of specialized matrices

Distributed Row Matrices (DRM)

— huge matrix, partitioned by rows

— lives in the main memory of the cluster

— provides small set of parallelized
operations

— lazily evaluated operation execution

val x = 2.367

val v = dvec(l, 0, 5)

val w =

svec((0 -> 1)::(2 -> 5)::

val A = dense((1, 0, 5),
(2, 1, 4),
(4, 3, 1))

val drmA drmFromHDFS (.. .)

Nil)

Features (1)

Matrix, vector, scalar operators: drmA %$*% drmB
in-memory, out-of-core A 3*% x
A.t $*% drmB
A *B

A(5 until 20, 3 until 40)

Slicing operators
A(5, ::); A(5, 5); x(a to b)

Assignments (in-memory only) A(5, ::) :=x

A *= B

A -=: B; 1 /:= X
Vector-specific x dot y; x cross y
Summaries

A.nrow; x.length;
A.colSums; B.rowMeans
X.sum,; A.norm

Features (2)

solving linear systems

in-memory decompositions

out-of-core decompositions

caching of DRMs

val x = solve (A, b)

val (inMemQ, inMemR) = gr (inMemM)

val ch = chol (inMemM)

val (inMemV, d) = eigen (inMemM)

val (inMemU, inMemV, s) = svd(inMemM)

val (drmQ, inMemR) = thinQR (drmA)
val (drmU, drmV, s) =
dssvd(drmA, k = 50, g = 1)

val drmA cached = drmA.checkpoint ()

drmA cached.uncache ()

Overview

Apache Mahout: Past & Future
A DSL for Machine Learning
Example

Under the covers

Distributed computation of X™X

Cereals

N 7)) T

Apple Cinnamon Cheerios 10.5 29.509541
Cap‘n‘Crunch 1 12 12 18.042851
Cocoa Puffs 1 1 12 13 22.736446
Froot Loops 2 1 11 13 32.207582
Honey Graham Ohs 1 2 12 11 21.871292
Wheaties Honey Gold 2 1 16 8 36.187559
Cheerios 6 2 17 1 50.764999
Clusters 3 2 13 7 40.400208
Great Grains Pecan 3 3 13 4 45.811716

http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html

Linear Regression

Assumption: target variable y generated by linear combination of feature
matrix X with parameter vector B, plus noise €

y=Xp+¢

* Goal: find estimate of the parameter
vector B that explains the data well ol

10}

* Cereals example
X = weights of ingredients . e T
y = customer rating // .

20 -10 10

20 30 40 50

Data Ingestion

Usually: load dataset as DRM from a distributed filesystem:

val drmData = drmFromHdfs (...)

,Mimick‘ a large dataset for our example:

val drmData = drmParallelize (dense (

(2, 2, 10.5,
(1, 2, 12,
(1, 1, 12,
(2, 1, 11,
(1, 2, 12,
(2, 1, 16,
(6, 2, 17,
(3, 2, 13,
(3, 3, 13,
numPartitions

10
12
13
13
11
8!

’

~

[-~ I

14
14
14
14

4

2)

29,
18.
.736446) ,
.207582) ,
.871292) ,
36.
50.
40.
45,

22
32
21

509541),
042851) ,

187559),
764999) ,
400208) ,
811716)),

//
//
//
//
//
//
//
//
//

Apple Cinnamon Cheerios
Cap'n'Crunch

Cocoa Puffs

Froot Loops

Honey Graham Ohs
Wheaties Honey Gold
Cheerios

Clusters

Great Grains Pecan

Data Preparation

Cereals example: target variable y is customer rating, weights of

ingredients are features X

extract X as DRM by slicing,
fetch y as in-core vector

val drmX = drmData(::, 0 until 4)

val y = drmData.collect(::,

4)

drmX y
2 2 10.5 10 ||29.509541
1 2 12 12 |]18.042851
1 1 12 13 |]22.736446
2 1 11 13 |132.207582
1 2 12 11 ||21.871292
2 1 16 8 |136.187559
6 2 17 1 |150.764999
3 2 13 7 1140.400208
3 3 13 4 |145.811716

Estimating 3

Ordinary Least Squares: minimizes the sum of residual squares between
true target variable and prediction of target variable

* Closed-form expression for estimation of 8 as

B=(X"X)"x"y

Computing X™X and X"y is as simple as typing the formulas:

val drmXtX = drmX.t $%$*% drmX
val drmXty = drmX %*% y

Estimating 3

Solve the following linear system to get least-squares estimate of 3

X'XB=X"y
Fetch X"™X and X'y onto the driver and use an in-core solver

— assumes X'X fits into memory
uses analogon to R’s solve() function

drmXtX.collect
drmXty.collect(::,

val XtX
val Xty

0)

val betaHat = solve (XtX, Xty)

Estimating 3

Solve the following linear system to get least-squares estimate of 3

X'XB=X"y

Fetch X™X and X'y onto the driver and use an in-memory solver

— assumes X'X fits into memory
— uses analogon to R’s solve() function

drmXtX.collect

val XtX
drmXty.collect(::,

val Xty

0)

val betaHat = solve (XtX, Xty)

- We have implemented distributed linear regression!
(would need to add a bias term in a real implementation)

Overview

Apache Mahout: Past & Future
A DSL for Machine Learning
Example

Under the covers

Distributed computation of X™X

Underlying systems

e currently: prototype on Apache Spark

— fast and expressive cluster
computing system
— general computation graphs, s Qr
in-memory primitives, rich API,
interactive shell

e future: add Apache Flink
— database-inspired distributed
processing engine

— emerged from research by
TU Berlin, HU Berlin, HPI

— functionality similar to Apache Spark, adds data flow
optimization and efficient out-of-core execution

Runtime & Optimization

o°

val C = X.t $*% X

Execution is defered, user

composes logical operators
I.writeDrm(path) ;

Computational actions implicitly val inMemV =

o %S
trigger optimization (= selection (U 3%% M) .collect
of physical plan) and execution

Optimization factors: size of operands, orientation of
operands, partitioning, sharing of computational paths

Optimization Example

e Computation of X™X in example

val drmXtX = drmX.t $*% drmX

Optimization Example

Computation of X™X in example

val drmXtX = drmX.t $*% drmX

Naive execution

1st pass: transpose X
(requires repartitioning of X)

Transpose

Optimization Example

* Computation of X™X in example

val drmXtX = drmX.t $*% drmX

e Naive execution

15t pass: transpose X

(requires repartitioning of X) m

2" pass: multiply result with X
(expensive, potentially requires
repartitioning again)

Transpose

Optimization Example

Computation of X™X in example

val drmXtX = drmX.t $%$*% drmX
Naive execution
15t pas

(requires ioning of X)

Transpose-
2 pass result with X | Times-Self
(expen ially requires

Logical optimization

Optimizer rewrites plan to use
specialized logical operator for
Transpose-Times-Self matrix
multiplication

Tranpose-Times-Self

* Mahout computes X"X via row-outer-product formulation

— executes in a single pass over row-partitioned X

Tranpose-Times-Self

* Mahout computes X"X via row-outer-product formulation

— executes in a single pass over row-partitioned X

jitl

XT

Tranpose-Times-Self

* Mahout computes X"X via row-outer-product formulation

— executes in a single pass over row-partitioned X

==

XT X

Tranpose-Times-Self

* Mahout computes X"X via row-outer-product formulation

— executes in a single pass over row-partitioned X

Tranpose-Times-Self

* Mahout computes X"X via row-outer-product formulation

— executes in a single pass over row-partitioned X

Tranpose-Times-Self

Mahout computes X'X via row-outer-product formulation

— executes in a single pass over row-partitioned X

Tranpose-Times-Self

Mahout computes X'X via row-outer-product formulation

— executes in a single pass over row-partitioned X

Overview

Apache Mahout: Past & Future
A DSL for Machine Learning
Example

Under the covers

Distributed computation of X'X

Physical operators for
Transpose-Times-Self

* Two physical operators (concrete implementations)
available for Transpose-Times-Self operation

— standard operator “AtA”

— operator “AtA_slim”, specialized
implementation for “tall & skinny”
matrices (many rows, few columns)

Transpose-
Times-Self

* Optimizer must choose

— currently: depends on user-defined
threshold for number of columns

— ideally: cost based decision, dependent on
estimates of intermediate result sizes

Physical operator ,AtA”

(11101

|1 0 1 0]

L0011)

Physical operator ,AtA”

f N

b

)
) S
o D
X

(0 0 1 1)

)

worker 2

Physical operator ,AtA”

for 1t partition

2)
1 1 1 0
1 0 1 0
X1
(1 1 1 0\ N\ J
1 0 1 0] worker 1
Lo 0 1 1J
4)
X for 1%t partition
0 o 1 1)
XZ
\§ J

worker 2

Physical operator ,AtA”

for 1%t partition

4 N,
(J 1 1 1 0)
1 1|11 0
(1 0 1 0
X1
(1 1 1 0\ N\ J
1 0 1 0] worker 1
Lo 0 1 1J
4)
X for 1%t partition
[EJ 0 o 1 1)
0 of1 1)
XZ
\ J

worker 2

Physical operator ,AtA”

for 1t partition

[\ EJ 1 1 1 0)
11 1 0 [;] (1010
1 0f1 0)
X
(1 1 1 0\ N\ J
1 0 1 0] worker 1
LO 0 1 IJ / \)
X for 1%t partition
[EJ 0 o 1 1)
0 o 1 1)
XZ
- /

worker 2

Physical operator ,AtA”

-

1 1 1 0
1 0 1 0

X

o

~

J

worker 1

worker 2

for 1%t partition

EJ(I 1 1 0)
(:)](l 0 1 0)

for 2" partition

for 1%t partition

[EJ(O 0 1 1)

for 2nd partition

Physical operator AtA

worker 2

for 1%t partition

EJ(I 1 1 0)
(:)](l 0 1 0)

for 2" partition

[:J(l 1 1 0)

for 1%t partition

[EJ(O 0 1 1)

for 2nd partition

[i](o 0 1 1)

Physical operator ,AtA”

-

1 1
1 0

~

1 0
1 0

X

o

worker 1

J

worker 2

for 1%t partition

EJ(I 1 1 0)
(:)](l 0 1 0)

for 2" partition

[:J(l 1 1 0)
[;J@ 0 1 0)

for 1%t partition

[EJ(O 0 1 1)

for 2nd partition

[i](o 0 1 1)

Physical operator ,AtA”

-

1 1 1 0
1 0 1 0

~

X
\ %
worker 1
4)
0 o 1 1)
XZ
- /

worker 2

for 1%t partition
1 1 1 0
{1 11 OJ
1 0 1 0
[0 0 0 OJ
for 2" partition
1 1 0
o1 o)

1
0 0
1 010
[0000}

for 1%t partition
0 0 0 O
(0 0 o0 OJ
for 2nd partition

0 0 1 1
0 0 1 1

Physical operator ,AtA”

-

1 1 1 0
1 0 1 O

X

o

~

|

J

worker 1

worker 2

for 1%t partition
1 1 1 0
{1 11 OJ
1 0 1 0
[0 0 0 OJ
for 2" partition
1 1 0
o1 o)

1
0 0
1 010
[0000}

for 1%t partition
0 0 0 O
(0 0 o0 OJ
for 2nd partition

0 0 1 1
0 0 1 1

> —

4)
2 1 2 0
(1 11 0)
\ %
worker 3
4)
2 1 3 1
(0 0 1 1)
\ J
worker 4

XTX

Physical operator ,AtA slim”

(11101

|1 0 1 0]

L0011)

Physical operator ,AtA slim”
4)

1 1 1 0
1 0 1 0

X
(1 1 1 0\ \ /
1 0 1 0] worker 1
Lo 0 1 1J
) 4)
0 o 1 1)
XZ

worker 2

Physical operator ,AtA slim”

4)
(2 1 2 01
1 1 1 0 |- 1 1 0]
(1 0 1 0] t - 2 OJ
- - 0
X, X,™X,
(1 1 1 0\ \ /
1 0 1 0] worker 1
Lo 0 1 1J
X / (0 0 0 0]\
|- 0 0 0|
0 o 1 1)]
S
X, —> X,’X,

worker 2

Physical operator ,AtA slim”

-

\
2 1 2 0
(1 1 1 0] (1 1 01
1 0 1 O | - 2 0|
L -)
X XX,
___ %
worker 1 .
~
4)
(0 0 0 0]
|- 0 0 0]
(0 0 1 1) | |
- - 1 1
S
X, —> X,'X,

worker 2

XX, + X,X, &>

—_ L = N

k. ek = =
.

driver

Summary

MapReduce outdated as abstraction for
distributed machine learning

R/Matlab-like DSL for declarative
implementation of algorithms

Automatic compilation, optimization and
parallelization of programs written in this DSL

Execution on novel distributed engines like
Apache Spark and Apache Flink

Thank you. Questions?

Tutorial for playing with the new Mahout DSL:
http://mahout.apache.org/users/sparkbindings/play-with-shell.html

Apache Flink Meetup in Berlin:
http://www.meetup.com/Apache-Flink-Meetup/

Follow me on twitter
@sscdotopen

http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/

