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Apache Mahout: History

• library for scalable machine learning (ML)

• started six years ago as ML on MapReduce

• focus on popular ML problems and algorithms
– Collaborative Filtering

„find interesting items for users based on past behavior“
– Classification

„learn to categorize objects“
– Clustering 

„find groups of similar objects“
– Dimensionality Reduction

„find a low-dimensional representation of the data“

• large userbase (e.g. Adobe, AOL, Accenture, Foursquare, Mendeley, Researchgate, 
Twitter)



Background: MapReduce

• simple paradigm for distributed processing 
(proposed by Google)

• user implements two functions map and
reduce

• system executes program in parallel, 
scales to clusters with thousands of machines

• popular open source implementation: 
Apache Hadoop



Background: MapReduce



Apache Mahout: Problems

• MapReduce not well suited for ML 
– slow execution, especially for iterations
– constrained programming model makes code 

hard to write, read and adjust
– lack of declarativity
– lots of handcoded joins necessary

• → Abandonment of MapReduce
– will reject new MapReduce implementations
– widely used „legacy“ implementations will be maintained

• → „Reboot“ with a new DSL
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Requirements for an ideal ML environment

1. R/Matlab-like semantics 
– type system that covers linear algebra and statistics

2. Modern programming language qualities
– functional programming

– object oriented programming

– scriptable and interactive

3. Scalability
– automatic distribution and 

parallelization with sensible 
performance
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Scala DSL

• Scala as programming/scripting environment

• R-like DSL : 

val G = B %*% B.t - C - C.t + (ksi dot ksi) * (s_q cross s_q)

• Declarativity!

• Algebraic expression optimizer for distributed linear algebra
– provides a translation layer to distributed engines

– currently supports Apache Spark only

– might support Apache Flink in the future
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Data Types

• Scalar real values

• In-memory vectors 
– dense 

– 2 types of sparse

• In-memory matrices
– sparse and dense

– a number of specialized matrices

• Distributed Row Matrices (DRM)
– huge matrix, partitioned by rows

– lives in the main memory of the cluster

– provides small set of parallelized 

operations

– lazily evaluated operation execution

val x = 2.367

val v = dvec(1, 0, 5)

val w = 

svec((0 -> 1)::(2 -> 5):: Nil)

val A = dense((1, 0, 5),

(2, 1, 4),

(4, 3, 1))

val drmA = drmFromHDFS(...)



Features (1)

• Matrix, vector, scalar operators: 
in-memory, out-of-core

• Slicing operators

• Assignments (in-memory only)

• Vector-specific

• Summaries

drmA %*% drmB

A %*% x

A.t %*% drmB

A * B

A(5 until 20, 3 until 40)

A(5, ::); A(5, 5); x(a to b)

A(5, ::) := x 

A *= B

A -=: B; 1 /:= x

x dot y; x cross y

A.nrow; x.length; 

A.colSums; B.rowMeans

x.sum; A.norm



Features (2)

• solving linear systems

• in-memory decompositions

• out-of-core decompositions

• caching of DRMs

val x = solve(A, b)

val (inMemQ, inMemR) = qr(inMemM)

val ch = chol(inMemM)

val (inMemV, d) = eigen(inMemM)

val (inMemU, inMemV, s) = svd(inMemM)

val (drmQ, inMemR) = thinQR(drmA)

val (drmU, drmV, s) = 

dssvd(drmA, k = 50, q = 1)

val drmA_cached = drmA.checkpoint()

drmA_cached.uncache()



Overview

• Apache Mahout: Past & Future

• A DSL for Machine Learning

• Example

• Under the covers

• Distributed computation of XTX



Cereals

Name protein fat carbo sugars rating

Apple Cinnamon Cheerios 2 2 10.5 10 29.509541

Cap‘n‘Crunch 1 2 12 12 18.042851

Cocoa Puffs 1 1 12 13 22.736446

Froot Loops 2 1 11 13 32.207582

Honey Graham Ohs 1 2 12 11 21.871292

Wheaties Honey Gold 2 1 16 8 36.187559

Cheerios 6 2 17 1 50.764999

Clusters 3 2 13 7 40.400208

Great Grains Pecan 3 3 13 4 45.811716

http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html



Linear Regression

• Assumption: target variable y generated by linear combination of feature 
matrix X with parameter vector β, plus noise ε

• Goal: find estimate of the parameter 
vector β that explains the data well

• Cereals example

X  = weights of ingredients
y  =  customer rating

 Xy



Data Ingestion

• Usually:  load dataset as DRM from a distributed filesystem:

val drmData = drmFromHdfs(...) 

• ‚Mimick‘ a large dataset for our example:

val drmData = drmParallelize(dense( 

(2, 2, 10.5, 10, 29.509541),   // Apple Cinnamon Cheerios 

(1, 2, 12,   12, 18.042851),   // Cap'n'Crunch 

(1, 1, 12,   13, 22.736446),   // Cocoa Puffs 

(2, 1, 11,   13, 32.207582),   // Froot Loops 

(1, 2, 12,   11, 21.871292),   // Honey Graham Ohs 

(2, 1, 16,   8,  36.187559),   // Wheaties Honey Gold 

(6, 2, 17,   1,  50.764999),   // Cheerios 

(3, 2, 13,   7,  40.400208),   // Clusters 

(3, 3, 13,   4,  45.811716)),  // Great Grains Pecan 

numPartitions = 2)



Data Preparation

• Cereals example: target variable y is customer rating, weights of 
ingredients are features X

• extract X as DRM by slicing, 
fetch y as in-core vector

val drmX = drmData(::, 0 until 4)

val y = drmData.collect(::, 4)
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Estimating β

• Ordinary Least Squares: minimizes the sum of residual squares between 
true target variable and prediction of target variable

• Closed-form expression for estimation of ß as 

• Computing XTX and XTy is as simple as typing the formulas:

val drmXtX = drmX.t %*% drmX

val drmXty = drmX %*% y

yXXX
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Estimating β

• Solve the following linear system  to get least-squares estimate of ß

• Fetch XTX and XTy onto the driver and use an in-core solver 
– assumes XTX fits into memory

– uses analogon to R’s solve() function

val XtX = drmXtX.collect

val Xty = drmXty.collect(::, 0) 

val betaHat = solve(XtX, Xty)

yXXX
TT

̂



Estimating β

• Solve the following linear system  to get least-squares estimate of ß

• Fetch XTX and XTy onto the driver and use an in-memory solver 
– assumes XTX fits into memory

– uses analogon to R’s solve() function
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→ We have implemented distributed linear regression!
(would need to add a bias term in a real implementation)
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Underlying systems

• currently: prototype on Apache Spark
– fast and expressive cluster 

computing system
– general computation graphs, 

in-memory primitives, rich API, 
interactive shell

• future: add Apache Flink
– database-inspired distributed 

processing engine
– emerged  from research by 

TU Berlin, HU Berlin, HPI
– functionality similar to Apache Spark, adds data flow 

optimization and efficient out-of-core execution



Runtime & Optimization

• Execution is defered, user 
composes logical operators

• Computational actions implicitly 
trigger optimization (= selection 
of physical plan) and execution 

• Optimization factors:  size of operands, orientation of 
operands, partitioning, sharing of computational paths

val C = X.t %*% X

I.writeDrm(path);  

val inMemV =

(U %*% M).collect



Optimization Example

• Computation of XTX in example

• Naïve execution

1st pass: transpose A 
(requires repartitioning of A)

2nd pass: multiply result with A
(expensive, potentially requires 
repartitioning again)

• Logical optimization:

rewrite plan to use specialized 
logical operator for 
Transpose-Times-Self matrix 
multiplication

val drmXtX = drmX.t %*% drmX



Optimization Example

• Computation of XTX in example

• Naïve execution

1st pass: transpose X 
(requires repartitioning of X)

2nd pass: multiply result with A
(expensive, potentially requires 
repartitioning again)

• Logical optimization:

rewrite plan to use specialized 
logical operator for 
Transpose-Times-Self matrix 
multiplication

val drmXtX = drmX.t %*% drmX

Transpose

X



Optimization Example

• Computation of XTX in example

• Naïve execution

1st pass: transpose X 
(requires repartitioning of X)

2nd pass: multiply result with X
(expensive, potentially requires 
repartitioning again)

• Logical optimization:

rewrite plan to use specialized 
logical operator for 
Transpose-Times-Self matrix 
multiplication

val drmXtX = drmX.t %*% drmX

Transpose

MatrixMult

X X

XTX



Optimization Example

• Computation of XTX in example

• Naïve execution

1st pass: transpose X 
(requires repartitioning of X)

2nd pass: multiply result with X
(expensive, potentially requires 
repartitioning again)

• Logical optimization
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specialized logical operator for 
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Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X
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– executes in a single pass over row-partitioned X







m

i

T

ii

T
xxXX

0

x = x +

X XT x1•  x1•
T



Tranpose-Times-Self
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Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X
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Physical operators for 
Transpose-Times-Self

• Two physical operators (concrete implementations) 
available for Transpose-Times-Self operation

– standard operator “AtA”

– operator “AtA_slim”, specialized 
implementation for “tall & skinny” 
matrices (many rows, few columns)

• Optimizer must choose  
– currently: depends on user-defined 

threshold for number of columns

– ideally: cost based decision, dependent on 
estimates of intermediate result sizes

Transpose-
Times-Self

X

XTX
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Physical operator „AtA_slim“
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Summary

• MapReduce outdated as abstraction for 
distributed machine learning

• R/Matlab-like DSL for declarative 
implementation of algorithms

• Automatic compilation, optimization and 
parallelization of programs written in this DSL

• Execution on novel distributed engines like 
Apache Spark and Apache Flink



Thank you. Questions?

Tutorial for playing with the new Mahout DSL:
http://mahout.apache.org/users/sparkbindings/play-with-shell.html

Apache Flink Meetup in Berlin:
http://www.meetup.com/Apache-Flink-Meetup/

Follow me on twitter 
@sscdotopen

http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/

