
Apache Mahout's new DSL for
Distributed Machine Learning

Sebastian Schelter

GOTO Berlin

11/06/2014

Overview

• Apache Mahout: Past & Future

• A DSL for Machine Learning

• Example

• Under the covers

• Distributed computation of XTX

Overview

• Apache Mahout: Past & Future

• A DSL for Machine Learning

• Example

• Under the covers

• Distributed computation of XTX

Apache Mahout: History

• library for scalable machine learning (ML)

• started six years ago as ML on MapReduce

• focus on popular ML problems and algorithms
– Collaborative Filtering

„find interesting items for users based on past behavior“
– Classification

„learn to categorize objects“
– Clustering

„find groups of similar objects“
– Dimensionality Reduction

„find a low-dimensional representation of the data“

• large userbase (e.g. Adobe, AOL, Accenture, Foursquare, Mendeley, Researchgate,
Twitter)

Background: MapReduce

• simple paradigm for distributed processing
(proposed by Google)

• user implements two functions map and
reduce

• system executes program in parallel,
scales to clusters with thousands of machines

• popular open source implementation:
Apache Hadoop

Background: MapReduce

Apache Mahout: Problems

• MapReduce not well suited for ML
– slow execution, especially for iterations
– constrained programming model makes code

hard to write, read and adjust
– lack of declarativity
– lots of handcoded joins necessary

• → Abandonment of MapReduce
– will reject new MapReduce implementations
– widely used „legacy“ implementations will be maintained

• → „Reboot“ with a new DSL

Overview

• Apache Mahout: Past & Future

• A DSL for Machine Learning

• Example

• Under the covers

• Distributed computation of XTX

Requirements for an ideal ML environment

1. R/Matlab-like semantics
– type system that covers linear algebra and statistics

2. Modern programming language qualities
– functional programming

– object oriented programming

– scriptable and interactive

3. Scalability
– automatic distribution and

parallelization with sensible
performance

Requirements for an ideal ML environment

1. R/Matlab-like semantics
– type system that covers linear algebra and statistics

2. Modern programming language qualities
– functional programming

– object oriented programming

– scriptable and interactive

3. Scalability
– automatic distribution and

parallelization with sensible
performance

Requirements for an ideal ML environment

1. R/Matlab-like semantics
– type system that covers linear algebra and statistics

2. Modern programming language qualities
– functional programming

– object oriented programming

– scriptable and interactive

3. Scalability
– automatic distribution and

parallelization with sensible
performance

Scala DSL

• Scala as programming/scripting environment

• R-like DSL :

val G = B %*% B.t - C - C.t + (ksi dot ksi) * (s_q cross s_q)

• Declarativity!

• Algebraic expression optimizer for distributed linear algebra
– provides a translation layer to distributed engines

– currently supports Apache Spark only

– might support Apache Flink in the future

q

T

q

TTT
ssCCBBG 

Data Types

• Scalar real values

• In-memory vectors
– dense

– 2 types of sparse

• In-memory matrices
– sparse and dense

– a number of specialized matrices

• Distributed Row Matrices (DRM)
– huge matrix, partitioned by rows

– lives in the main memory of the cluster

– provides small set of parallelized

operations

– lazily evaluated operation execution

val x = 2.367

val v = dvec(1, 0, 5)

val w =

svec((0 -> 1)::(2 -> 5):: Nil)

val A = dense((1, 0, 5),

(2, 1, 4),

(4, 3, 1))

val drmA = drmFromHDFS(...)

Features (1)

• Matrix, vector, scalar operators:
in-memory, out-of-core

• Slicing operators

• Assignments (in-memory only)

• Vector-specific

• Summaries

drmA %*% drmB

A %*% x

A.t %*% drmB

A * B

A(5 until 20, 3 until 40)

A(5, ::); A(5, 5); x(a to b)

A(5, ::) := x

A *= B

A -=: B; 1 /:= x

x dot y; x cross y

A.nrow; x.length;

A.colSums; B.rowMeans

x.sum; A.norm

Features (2)

• solving linear systems

• in-memory decompositions

• out-of-core decompositions

• caching of DRMs

val x = solve(A, b)

val (inMemQ, inMemR) = qr(inMemM)

val ch = chol(inMemM)

val (inMemV, d) = eigen(inMemM)

val (inMemU, inMemV, s) = svd(inMemM)

val (drmQ, inMemR) = thinQR(drmA)

val (drmU, drmV, s) =

dssvd(drmA, k = 50, q = 1)

val drmA_cached = drmA.checkpoint()

drmA_cached.uncache()

Overview

• Apache Mahout: Past & Future

• A DSL for Machine Learning

• Example

• Under the covers

• Distributed computation of XTX

Cereals

Name protein fat carbo sugars rating

Apple Cinnamon Cheerios 2 2 10.5 10 29.509541

Cap‘n‘Crunch 1 2 12 12 18.042851

Cocoa Puffs 1 1 12 13 22.736446

Froot Loops 2 1 11 13 32.207582

Honey Graham Ohs 1 2 12 11 21.871292

Wheaties Honey Gold 2 1 16 8 36.187559

Cheerios 6 2 17 1 50.764999

Clusters 3 2 13 7 40.400208

Great Grains Pecan 3 3 13 4 45.811716

http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html

Linear Regression

• Assumption: target variable y generated by linear combination of feature
matrix X with parameter vector β, plus noise ε

• Goal: find estimate of the parameter
vector β that explains the data well

• Cereals example

X = weights of ingredients
y = customer rating

 Xy

Data Ingestion

• Usually: load dataset as DRM from a distributed filesystem:

val drmData = drmFromHdfs(...)

• ‚Mimick‘ a large dataset for our example:

val drmData = drmParallelize(dense(

(2, 2, 10.5, 10, 29.509541), // Apple Cinnamon Cheerios

(1, 2, 12, 12, 18.042851), // Cap'n'Crunch

(1, 1, 12, 13, 22.736446), // Cocoa Puffs

(2, 1, 11, 13, 32.207582), // Froot Loops

(1, 2, 12, 11, 21.871292), // Honey Graham Ohs

(2, 1, 16, 8, 36.187559), // Wheaties Honey Gold

(6, 2, 17, 1, 50.764999), // Cheerios

(3, 2, 13, 7, 40.400208), // Clusters

(3, 3, 13, 4, 45.811716)), // Great Grains Pecan

numPartitions = 2)

Data Preparation

• Cereals example: target variable y is customer rating, weights of
ingredients are features X

• extract X as DRM by slicing,
fetch y as in-core vector

val drmX = drmData(::, 0 until 4)

val y = drmData.collect(::, 4)

























































8117164541333

4002084071323

7649995011726

1875593681612

87129221111221

20758232131112

73644622131211

04285118121221

509541291051022

.

.

.

.

.

.

.

.

..

drmX y

Estimating β

• Ordinary Least Squares: minimizes the sum of residual squares between
true target variable and prediction of target variable

• Closed-form expression for estimation of ß as

• Computing XTX and XTy is as simple as typing the formulas:

val drmXtX = drmX.t %*% drmX

val drmXty = drmX %*% y

yXXX
TT 1

)(ˆ 


Estimating β

• Solve the following linear system to get least-squares estimate of ß

• Fetch XTX and XTy onto the driver and use an in-core solver
– assumes XTX fits into memory

– uses analogon to R’s solve() function

val XtX = drmXtX.collect

val Xty = drmXty.collect(::, 0)

val betaHat = solve(XtX, Xty)

yXXX
TT

̂

Estimating β

• Solve the following linear system to get least-squares estimate of ß

• Fetch XTX and XTy onto the driver and use an in-memory solver
– assumes XTX fits into memory

– uses analogon to R’s solve() function

val XtX = drmXtX.collect

val Xty = drmXty.collect(::, 0)

val betaHat = solve(XtX, Xty)

yXXX
TT

̂

→ We have implemented distributed linear regression!
(would need to add a bias term in a real implementation)

Overview

• Apache Mahout: Past & Future

• A DSL for Machine Learning

• Example

• Under the covers

• Distributed computation of XTX

Underlying systems

• currently: prototype on Apache Spark
– fast and expressive cluster

computing system
– general computation graphs,

in-memory primitives, rich API,
interactive shell

• future: add Apache Flink
– database-inspired distributed

processing engine
– emerged from research by

TU Berlin, HU Berlin, HPI
– functionality similar to Apache Spark, adds data flow

optimization and efficient out-of-core execution

Runtime & Optimization

• Execution is defered, user
composes logical operators

• Computational actions implicitly
trigger optimization (= selection
of physical plan) and execution

• Optimization factors: size of operands, orientation of
operands, partitioning, sharing of computational paths

val C = X.t %*% X

I.writeDrm(path);

val inMemV =

(U %*% M).collect

Optimization Example

• Computation of XTX in example

• Naïve execution

1st pass: transpose A
(requires repartitioning of A)

2nd pass: multiply result with A
(expensive, potentially requires
repartitioning again)

• Logical optimization:

rewrite plan to use specialized
logical operator for
Transpose-Times-Self matrix
multiplication

val drmXtX = drmX.t %*% drmX

Optimization Example

• Computation of XTX in example

• Naïve execution

1st pass: transpose X
(requires repartitioning of X)

2nd pass: multiply result with A
(expensive, potentially requires
repartitioning again)

• Logical optimization:

rewrite plan to use specialized
logical operator for
Transpose-Times-Self matrix
multiplication

val drmXtX = drmX.t %*% drmX

Transpose

X

Optimization Example

• Computation of XTX in example

• Naïve execution

1st pass: transpose X
(requires repartitioning of X)

2nd pass: multiply result with X
(expensive, potentially requires
repartitioning again)

• Logical optimization:

rewrite plan to use specialized
logical operator for
Transpose-Times-Self matrix
multiplication

val drmXtX = drmX.t %*% drmX

Transpose

MatrixMult

X X

XTX

Optimization Example

• Computation of XTX in example

• Naïve execution

1st pass: transpose X
(requires repartitioning of X)

2nd pass: multiply result with X
(expensive, potentially requires
repartitioning again)

• Logical optimization

Optimizer rewrites plan to use
specialized logical operator for
Transpose-Times-Self matrix
multiplication

val drmXtX = drmX.t %*% drmX

Transpose

MatrixMult

X X

XTX

Transpose-
Times-Self

X

XTX

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X







m

i

T

ii

T
xxXX

0

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X







m

i

T

ii

T
xxXX

0

XT

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X







m

i

T

ii

T
xxXX

0

x

X XT

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X







m

i

T

ii

T
xxXX

0

x = x +

X XT x1• x1•
T

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X







m

i

T

ii

T
xxXX

0

x = x + +x

X XT x1• x1•
T x2• x2•

T

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X







m

i

T

ii

T
xxXX

0

x = x + + +x x

X XT x1• x1•
T x2• x2•

T x3• x3•
T

Tranpose-Times-Self

• Mahout computes XTX via row-outer-product formulation
– executes in a single pass over row-partitioned X







m

i

T

ii

T
xxXX

0

x = x + + +x x x

X XT x1• x1•
T x2• x2•

T x3• x3•
T x4• x4•

T

Overview

• Apache Mahout: Past & Future

• A DSL for Machine Learning

• Example

• Under the covers

• Distributed computation of XTX

Physical operators for
Transpose-Times-Self

• Two physical operators (concrete implementations)
available for Transpose-Times-Self operation

– standard operator “AtA”

– operator “AtA_slim”, specialized
implementation for “tall & skinny”
matrices (many rows, few columns)

• Optimizer must choose
– currently: depends on user-defined

threshold for number of columns

– ideally: cost based decision, dependent on
estimates of intermediate result sizes

Transpose-
Times-Self

X

XTX

Physical operator „AtA“





















1100

0101

0111

X

X2

 1100

Physical operator „AtA“





















1100

0101

0111

X1

X

worker 1

worker 2















0101

0111

X2

 1100

Physical operator „AtA“





















1100

0101

0111

X1

X

worker 1

worker 2















0101

0111

for 1st partition

for 1st partition

X2

 1100

Physical operator „AtA“





















1100

0101

0111

X1

X

worker 1

worker 2















0101

0111

 0111
1

1















 1100
0

0















for 1st partition

for 1st partition

X2

 1100

Physical operator „AtA“





















1100

0101

0111

X1

X

worker 1

worker 2















0101

0111

 0111
1

1















 1100
0

0















for 1st partition

for 1st partition

 0101
0

1















X2

 1100

Physical operator „AtA“





















1100

0101

0111

X1

X

worker 1

worker 2















0101

0111

 0111
1

1















 1100
0

0















for 1st partition

for 1st partition

 0101
0

1















for 2nd partition

for 2nd partition

A2

 1100

Physical operator AtA





















1100

0101

0111

A1

A

worker 1

worker 2















0101

0111

 0111
1

1















 1100
0

0















for 1st partition

for 1st partition

 0101
0

1















 0111
0

1















for 2nd partition

 1100
1

1















for 2nd partition

X2

 1100

Physical operator „AtA“





















1100

0101

0111

X1

X

worker 1

worker 2















0101

0111

 0111
1

1















 1100
0

0















for 1st partition

for 1st partition

 0101
0

1















 0111
0

1















for 2nd partition

 0101
0

1















 1100
1

1















for 2nd partition

X2

 1100

Physical operator „AtA“





















1100

0101

0111

X1

X

worker 1

worker 2















0101

0111















0111

0111















0000

0000

for 1st partition

for 1st partition















0000

0101















0000

0111

for 2nd partition















0000

0101















1100

1100

for 2nd partition

X2

 1100

Physical operator „AtA“





















1100

0101

0111

X1

X

worker 1

worker 2















0101

0111















0111

0111















0000

0000

for 1st partition

for 1st partition















0000

0101















0000

0111

for 2nd partition















0000

0101















1100

1100

for 2nd partition















0111

0212

worker 3















1100

1312

worker 4

∑

∑

XTX

Physical operator „AtA_slim“





















1100

0101

0111

X

X2

 1100

Physical operator „AtA_slim“





















1100

0101

0111

X1

X

worker 1

worker 2















0101

0111

X2
TX2X2

 1100

































1

11

000

0000

Physical operator „AtA_slim“





















1100

0101

0111

X1
TX1X1

X

worker 1

worker 2















0101

0111

































0

02

011

0212

X2
TX2X2

 1100

































1

11

000

0000

Physical operator „AtA_slim“





















1100

0101

0111

X1
TX1X1

X XTX

worker 1

worker 2

X1
TX1 + X2

TX2

driver















0101

0111

































0

02

011

0212



























1100

1312

0111

0212

Summary

• MapReduce outdated as abstraction for
distributed machine learning

• R/Matlab-like DSL for declarative
implementation of algorithms

• Automatic compilation, optimization and
parallelization of programs written in this DSL

• Execution on novel distributed engines like
Apache Spark and Apache Flink

Thank you. Questions?

Tutorial for playing with the new Mahout DSL:
http://mahout.apache.org/users/sparkbindings/play-with-shell.html

Apache Flink Meetup in Berlin:
http://www.meetup.com/Apache-Flink-Meetup/

Follow me on twitter
@sscdotopen

http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://mahout.apache.org/users/sparkbindings/play-with-shell.html
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/
http://www.meetup.com/Apache-Flink-Meetup/

