
@timfox

High performance reactive
applications with Vert.x

Tim Fox

Red Hat

@timfox

Bio

• Employed By Red Hat to lead the Vert.x project

• Worked in open source exclusively for the past 9 years

• Some projects I've been involved with: Vert.x (creator), RabbitMQ,
HornetQ (creator), JBoss AS, Mobicents...

@timfox

Current Status

• Vert.x 2.1.2 current production release

• Vert.x 3.0 in development (release towards end of year)

• This talk will describe features in Vert.x 3.0 – not all available
in Vert.x 2.x

@timfox

What is Vert.x?

• General purpose JVM application framework

• Inspiration from Erlang/OTP and Node.js - Non blocking and
asynchronous

• Polyglot – we don't force you to use one language.

• Very high performance

• Simple but not simplistic

• Lightweight

• Winner of JAX innovation award 2014 for most innovative Java
technology!

@timfox

Polyglot

Full implementation:

@timfox

Core Asychronous APIs

• Core is small and static

• TCP/SSL clients and servers

• HTTP/HTTPS clients and servers

• Websockets, SockJS

• File system

• Event bus

• DNS

• UDP

• Distributed Data

@timfox

Why Asynchronous?

• Modern servers need to handle high levels of concurrency – web servers,
websockets, IoT etc

• OS threads are still a precious resource

• Need to service many connections with small number of threads

• Blocked OS threads means they can't do other work

@timfox

Verticle

• Execution unit of Vert.x

• Can be written in any language

• Single threaded – less scope for race conditions

• Verticles communicate by message passing

• Hmmm.. sounds like the Actor Model?

• Can be run at command line or embedded in an app.

• Can be packaged into jars and like in Maven, bintray etc

Demo

@timfox

@timfox

Event Bus

• The nervous system of Vert.x

• Verticles send messages over the event bus

• Point to point. Publish/Subscribe. Request/Response

• Pass strings, buffers, primitive types or JSON

• Can provide codecs for custom types

• JSON messages are “convention” for structured data

@timfox

Clustered Event Bus

• Lightweight peer-to-peer messaging system

• Connects multiple Vert.x JVM instances

• Applications are loosely coupled components distributed across your
network

• No monolithic “application server”

• Micro-services

@timfox

Event bus in the Browser

• Event bus extends to client side JavaScript too

• Uses the same API on the client

• Powerful distributed event space spanning both client and server nodes

• Ideal for modern “real-time” web applications

• Use whatever client side toolkit you prefer

Demo

@timfox

@timfox

Running verticles

• Verticles can be run directly on command line

• Can be trivially embedded

public static void main(String[] args) {
 Vertx vertx = Vertx.vertx();
 vertx.deployVerticle(“java:com.mycompany.MyVerticle”);
}

• Verticles can be run directly on command line

• Can be trivially embedded
• Verticles can be run directly on command line

• Can be trivially embedded
• Verticles can be run directly on command line

• Can be trivially embedded

• Can be packaged into executable “fat” jars

Demo

@timfox

@timfox

High Availability

• Automatic failover of deployed modules

• Nodes can be logically grouped

• Network partition detection (quorum)

Demo

@timfox

@timfox

Code Generation

• Manually maintaining N language APIs a lot of work!

• Vert.x 3.0 generates these APIs from the Java API

• Uses MVEL 2 templates

• Constraints on interfaces to make this feasible

@timfox

Rx-ify that!

• Sick of callback hell?

• We will use codegen to generate Rx-ified versions of our APIs

• RxJava – Reactive Extensions for the JVM

@timfox

Distributed Data

• Distributed Asynchronous Map

• Distributed Asynchronous Lock

• Distributed Asynchronous Counter

map.get(“someKey”, ar -> {});

sharedData.getLock(“lockName”, ar -> {});

counter.incrementAndGet(ar -> {});

@timfox

Management and monitoring

• Metrics provided by many of the core objects

• Can be exposed via JMX or on the event bus

@timfox

Official stack

• Databases – Postgres/MySQL, JDBC, Mongo, Redis, etc

• Messaging – JMS, AMQP

• IoT – MQTT, CoAP

• Authentication/Authorisation

• REST microservices

• etc

@timfox

Summary

• Write apps as set of loosely coupled components that live anywhere
where you want – no app server.

• Polyglot – use the language(s) you want

• Simple concurrency – wave goodbye to most race conditions

• Verticles – a library of lego bricks to build apps with

• High availability

• Ease of development

@timfox

Project Info

• Independent Community Project

• The main project is an Eclipse Foundation project

• All code is on GitHub

• 100% open source (ASL 2.0 + Creative Commons)

• One of the most popular Java projects on GitHub

@timfox

Get involved!

• Vert.x 3.0 in development now

• Active and growing community

• Find us on GitHub

• Google group: vertx

• IRC channel: #vertx on freenode.net

@timfox

Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

