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Bio

• Employed By Red Hat to lead the Vert.x project

• Worked in open source exclusively for the past 9 years

• Some projects I've been involved with: Vert.x (creator), RabbitMQ, 
HornetQ (creator), JBoss AS, Mobicents...
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Current Status

• Vert.x 2.1.2 current production release

• Vert.x 3.0 in development (release towards end of year)

• This talk will describe features in Vert.x 3.0 – not all available 
in Vert.x 2.x
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What is Vert.x?

• General purpose JVM application framework

• Inspiration from Erlang/OTP and Node.js - Non blocking and 
asynchronous

• Polyglot – we don't force you to use one language.

• Very high performance

• Simple but not simplistic

• Lightweight

• Winner of JAX innovation award 2014 for most innovative Java 
technology!
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Polyglot

Full implementation:



@timfox

Core Asychronous APIs

• Core is small and static

• TCP/SSL clients and servers

• HTTP/HTTPS clients and servers

• Websockets, SockJS

• File system

• Event bus

• DNS

• UDP

• Distributed Data
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Why Asynchronous?

• Modern servers need to handle high levels of concurrency – web servers, 
websockets, IoT etc

• OS threads are still a precious resource

• Need to service many connections with small number of threads

• Blocked OS threads means they can't do other work
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Verticle

• Execution unit of Vert.x

• Can be written in any language

• Single threaded – less scope for race conditions

• Verticles communicate by message passing

• Hmmm.. sounds like the Actor Model?

• Can be run at command line or embedded in an app.

• Can be packaged into jars and like in Maven, bintray etc
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Event Bus

• The nervous system of Vert.x

• Verticles send messages over the event bus

• Point to point. Publish/Subscribe. Request/Response

• Pass strings, buffers, primitive types or JSON

• Can provide codecs for custom types

• JSON messages are “convention” for structured data
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Clustered Event Bus

• Lightweight peer-to-peer messaging system

• Connects multiple Vert.x JVM instances

• Applications are loosely coupled components distributed across your 
network

• No monolithic “application server”

• Micro-services
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Event bus in the Browser

• Event bus extends to client side JavaScript too

• Uses the same API on the client

• Powerful distributed event space spanning both client and server nodes

• Ideal for modern “real-time” web applications

• Use whatever client side toolkit you prefer
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Running verticles

• Verticles can be run directly on command line

• Can be trivially embedded

public static void main(String[] args) {
  Vertx vertx = Vertx.vertx();
  vertx.deployVerticle(“java:com.mycompany.MyVerticle”); 
}

• Verticles can be run directly on command line

• Can be trivially embedded
• Verticles can be run directly on command line

• Can be trivially embedded
• Verticles can be run directly on command line

• Can be trivially embedded

• Can be packaged into executable “fat” jars
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High Availability

• Automatic failover of deployed modules

• Nodes can be logically grouped

• Network partition detection (quorum)
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Code Generation

• Manually maintaining N language APIs a lot of work!

• Vert.x 3.0 generates these APIs from the Java API

• Uses MVEL 2 templates

• Constraints on interfaces to make this feasible
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Rx-ify that!

• Sick of callback hell?

• We will use codegen to generate Rx-ified versions of our APIs

• RxJava – Reactive Extensions for the JVM 
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Distributed Data

• Distributed Asynchronous Map

• Distributed Asynchronous Lock

• Distributed Asynchronous Counter

map.get(“someKey”, ar -> {});

sharedData.getLock(“lockName”, ar -> {});

counter.incrementAndGet(ar -> {});



@timfox

Management and monitoring

• Metrics provided by many of the core objects

• Can be exposed via JMX or on the event bus
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Official stack

• Databases – Postgres/MySQL, JDBC, Mongo, Redis, etc

• Messaging – JMS, AMQP

• IoT – MQTT, CoAP

• Authentication/Authorisation

• REST microservices

• etc
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Summary

• Write apps as set of loosely coupled components that live anywhere 
where you want – no app server.

• Polyglot – use the language(s) you want

• Simple concurrency – wave goodbye to most race conditions

• Verticles – a library of lego bricks to build apps with

• High availability

• Ease of development
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Project Info

• Independent Community Project

• The main project is an Eclipse Foundation project

• All code is on GitHub

• 100% open source (ASL 2.0 + Creative Commons)

• One of the most popular Java projects on GitHub
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Get involved!

• Vert.x 3.0 in development now

• Active and growing community

• Find us on GitHub

• Google group: vertx

• IRC channel: #vertx on freenode.net
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Q & A
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