

Scaling fashionably
How PostgreSQL helped Zalando to become one
of the biggest online fashion retailers in Europe

About me

Valentine Gogichashvili
Database Engineer @Zalando
twitter: @valgog
google+: +valgog
email: valentine.gogichashvili@zalando.de

15 countries
3 fulfillment centers
13.7+ million active customers
1.8 billion € revenue 2013
150,000+ products
640+ million visits in first half-year 2014

One of Europe's largest
online fashion retailers

Some more numbers

200+ deployment units (WARs)

1300+ production instances

80+ database master instances

90+ different databases

300+ developers

10 database engineers

Even more numbers

● > 4.0 TB of PostgreSQL data

● Biggest instances (not counted before)
○ eventlogdb (3TB)

■ 20 GB per week

○ riskmgmtdb (5TB)

■ 12 GB per day

Biggest challenges

● Constantly growing

● Fast development cycles

● No downtimes are tolerated

Agenda

● access data

● change data models without downtimes

● shard without limits

● monitor

How we

Agenda

● access data

● change data models without downtimes

● shard without limits

● monitor

How we

Accessing data

- customer

 - bank account

 - order -> bank account

 - order position

 - return order -> order

 - return position -> order position

 - financial document

 - financial transaction -> order

Accessing data

NoSQL
▶ map your object hierarchy to a document
▶ (de-)serialization is easy
▶ transactions are not needed

▷ No SQL
▷ implicit schemas are tricky

Accessing data

ORM
▶ is well known to developers
▶ CRUD operations are easy
▶ all business logic inside your application
▶ developers are in their comfort zone

Accessing data

ORM
▶ is well known to developers
▶ CRUD operations are easy
▶ all business logic inside your application
▶ developers are in their comfort zone

▷ error prone transaction management
▷ you have to reflect your tables in your code
▷ all business logic inside your application
▷ schema changes are not easy

Accessing data

Are there alternatives to ORM?

Accessing data

Are there alternatives to ORM?

Stored Procedures

▶ return/receive entity aggregates

▶ clear transaction scope

▶ more data consistency checks

▶ independent from underlying data schema

JDBC

Java Application

Database Tables

Accessing data

JDBC

Java Application

Database Tables
Stored Procedure API

Database Tables

Accessing data

Java Sproc Wrapper

JDBC

Java Application
Java Application

Sproc Wrapper

Database Tables
Stored Procedure API

Database Tables

CREATE FUNCTION register_customer(p_email text,
 p_gender z_data.gender)
 RETURNS int
AS $$
 INSERT INTO z_data.customer (c_email, c_gender)
 VALUES (p_email, p_gender)
 RETURNING c_id
$$
LANGUAGE 'sql' SECURITY DEFINER;

SQL

Java Sproc Wrapper

@SProcService
public interface CustomerSProcService {
 @SProcCall
 int registerCustomer(@SProcParam String email,
 @SProcParam Gender gender);
}

JAVA

CREATE FUNCTION register_customer(p_email text,
 p_gender z_data.gender)
 RETURNS int
AS $$
 INSERT INTO z_data.customer (c_email, c_gender)
 VALUES (p_email, p_gender)
 RETURNING c_id
$$
LANGUAGE 'sql' SECURITY DEFINER;

SQL

Java Sproc Wrapper

@SProcService
public interface CustomerSProcService {
 @SProcCall
 int registerCustomer(@SProcParam String email,
 @SProcParam Gender gender);
}

CREATE FUNCTION register_customer(p_email text,
 p_gender z_data.gender)
 RETURNS int
AS $$
 INSERT INTO z_data.customer (c_email, c_gender)
 VALUES (p_email, p_gender)
 RETURNING c_id
$$
LANGUAGE 'sql' SECURITY DEFINER;

JAVA

SQL

Java Sproc Wrapper

@SProcCall
List<Order> findOrders(@SProcParam String email);

JAVA

CREATE FUNCTION find_orders(p_email text,
 OUT order_id int,
 OUT order_created timestamptz,
 OUT shipping_address order_address)
 RETURNS SETOF record
AS $$
 SELECT o_id, o_created,
 ROW(oa_street, oa_city, oa_country)::order_address
 FROM z_data."order"
 JOIN z_data.order_address ON oa_order_id = o_id
 JOIN z_data.customer ON c_id = o_customer_id
 WHERE c_email = p_email
$$
LANGUAGE 'sql' SECURITY DEFINER;

SQL

Java Sproc Wrapper

CREATE FUNCTION find_orders(p_email text,
 OUT order_id int,
 OUT order_created timestamptz,
 OUT shipping_address order_address)
 RETURNS SETOF record
AS $$
 SELECT o_id, o_created,
 ROW(oa_street, oa_city, oa_country)::order_address
 FROM z_data."order"
 JOIN z_data.order_address ON oa_order_id = o_id
 JOIN z_data.customer ON c_id = o_customer_id
 WHERE c_email = p_email
$$
LANGUAGE 'sql' SECURITY DEFINER;

@SProcCall
List<Order> findOrders(@SProcParam String email);

JAVA

SQL

Java Sproc Wrapper

Stored Procedures
for developers

▷ CRUD operations need too much code
▷ Developers have to learn SQL
▷ Developers can write bad SQL
▷ Code reviews are needed

Stored Procedures
for developers

▷ CRUD operations need too much code
▷ Developers have to learn SQL
▷ Developers can write bad SQL
▷ Code reviews are needed

▶ Use-case driven
▶ Developers have to learn SQL
▶ Developers learn how to write good SQL

Horror story

▷ Never map your data manually

▷ Educate yourself

Database Tables

Stored Procedure
API versioning

api_v13_01

search_path =
api_v13_01, public;

Database Tables

Stored Procedure
API versioning

api_v13_02api_v13_01

search_path =
api_v13_01, public;

Database Tables

Stored Procedure
API versioning

api_v13_02api_v13_01

search_path =
api_v13_01, public;

search_path =
api_v13_02, public;

Database Tables

Stored Procedure
API versioning

api_v13_02

search_path =
api_v13_02, public;

api_v13_01

search_path =
api_v13_01, public;

Database Tables

Stored Procedure
API versioning

api_v13_02

search_path =
api_v13_02, public;

api_v13_01

▶ Tests are done to the whole API version

▶ No API migrations needed

▶ Deployments are fully automated

Stored Procedure
API versioning

Agenda

● access data

● change data models without downtimes

● shard without limits

● monitor

How we

Easy schema changes

● PostgreSQL

▶ Schema changes with minimal locks with:
ADD/RENAME/DROP COLUMN

ADD/DROP DEFAULT VALUE

▶ CREATE/DROP INDEX CONCURRENTLY

▷ Constraints are still difficult to ALTER

(becoming much better in 9.4)

Easy schema changes

● Stored Procedure API layer

▶ Can fill missing data on the fly

▶ Helps to change data structure
without application noticing it

Easy schema changes

● Read and write to old structure

● Write to both structures, old and new.
Try to read from new, fallback to old

● Migrate data

● Read from new, write to old and new

Easy schema changes

● Schema changes using SQL script files

○ SQL scripts written by developers (DBDIFFs)

○ registering DBDIFFs with Versioning

○ should be reviewed by DB guys

○ DB guys are rolling DB changes on the live

system

Easy schema changes

BEGIN;

 SELECT _v.register_patch('ZEOS-5430.order');

 CREATE TABLE z_data.order_address (

 oa_id int SERIAL,

 oa_country z_data.country,

 oa_city varchar(64),

 oa_street varchar(128), ...

);

 ALTER TABLE z_data."order" ADD o_shipping_address_id int

 REFERENCES z_data.order_address (oa_id);

COMMIT;

DBDIFF SQL

Easy schema changes

BEGIN;

 SELECT _v.register_patch('ZEOS-5430.order');

 \i order/database/order/10_tables/10_order_address.sql

 ALTER TABLE z_data."order" ADD o_shipping_address_id int

 REFERENCES z_data.order_address (oa_id);

COMMIT;

DBDIFF SQL

Easy schema changes

BEGIN;

 SELECT _v.register_patch('ZEOS-5430.order');

 \i order/database/order/10_tables/10_order_address.sql

 SET statement_timeout TO ‘3s’;

 ALTER TABLE z_data."order" ADD o_shipping_address_id int

 REFERENCES z_data.order_address (oa_id);

COMMIT;

DBDIFF SQL

Easy schema changes

Easy schema changes

Easy schema changes

No downtime due to migrations or

deployment since we use PostgreSQL

Easy schema changes

One downtime due to migrations or

deployment since we use PostgreSQL

Horror story

▷ Invest in staging environments

▷ Do not create artificial process bottlenecks

▷ Educate yourself

Agenda

● access data

● change data models without downtimes

● shard without limits

● monitor

How we

One big database

▶ Joins between any entities

▶ Perfect for BI

▶ Simple access strategy

▶ Less machines to manage

One big database

▷ Data does not fit into memory

▷ OLTP becomes slower

▷ Longer data migration times

▷ Database maintenance tasks take longer

Sharded database

▶ Data fits into memory

▶ IO bottleneck wider

▶ OLTP is fast again

▶ Data migrations are faster

▶ Database maintenance tasks are faster

Sharded database

▷ Joins only between entities aggregates

▷ BI need more tooling

▷ Accessing data needs more tooling

▷ Managing more servers needs more tooling

Sharded database

▷ Need more tooling

Sharding without limits

Java Application

Sproc Wrapper

Database Tables
Stored Procedure API

Database Tables

Sharding without limits

Java Application

Sproc Wrapper

...
Shard 1 Shard 2 Shard 3 Shard N

@SProcCall

int registerCustomer(@SProcParam @ShardKey CustomerNumber customerNumber,

 @SProcParam String email,

 @SProcParam Gender gender);

JAVA

Sharding with Java Sproc Wrapper

@SProcCall

Article getArticle(@SProcParam @ShardKey Sku sku);

JAVA

@SProcCall(runOnAllShards = true, parallel = true)

List<Order> findOrders(@SProcParam String email);

JAVA

Entity lookup strategies

● search on all shards (in parallel)

● hash lookups

● unique shard aware ID

○ Virtual Shard IDs (pre-sharding)

Sharding with Java Sproc Wrapper

Agenda

● access data

● change data models without downtimes

● shard without limits

● monitor

How we

Monitoring

pg_view

Monitoring

● Tools
○ psql wrapper on DBA client machines

■ psql_<instance>_<ENV>

○ aliases on the host machines
■ pg_ctl_<instance>
■ psql_<instance>

■ pg_taillog_<instance>

○ helper scripts
■ assign or remove service/elastic IPs
■ backup all instances on the host

Monitoring

● Nagios/Icinga (being replaced by ZMON2)

● Dedicated 24x7 monitoring team

● Custom monitoring infrastructure ZMON2

PGObserver

PGObserver

What we are working at

● DaaS

● Continuous deployment (including the DBs)

● PGObserver 2.0 (join the effort!)

Links
SProcWrapper – Java library for stored procedure access
github.com/zalando/java-sproc-wrapper

PGObserver – monitoring web tool for PostgreSQL
github.com/zalando/PGObserver

pg_view – top-like command line activity monitor
github.com/zalando/pg_view

https://github.com/zalando/java-sproc-wrapper
https://github.com/zalando/java-sproc-wrapper
https://github.com/zalando/java-sproc-wrapper
https://github.com/zalando/PGObserver
https://github.com/zalando/PGObserver
https://github.com/zalando/PGObserver
https://github.com/zalando/pg_view
https://github.com/zalando/pg_view

Thank you!

Easy schema changes

Database Tables

api_v13_45

search_path =
api_v13_45, public;

Order with addresses
● order_number
● shipping address

Read and write to old structure

Easy schema changes

Database Tables

api_v13_46

search_path =
api_v13_46, public;

Order with addresses
● order_number
● shipping address
● shipping address ID

Address
● ID
● City
● Street
● ...

Coalesce

Migrate all
addresses

Write to both structures, old and new
Try to read from new, fallback to old

Easy schema changes

Database Tables

api_v13_47

search_path =
api_v13_47, public;

Order with addresses
● order_number
● shipping address
● shipping address ID

Address
● ID
● City
● Street
● ...

Read from new
Write to both structures, old and new

Easy schema changes

Database Tables

api_v13_48

search_path =
api_v13_48, public;

Order with addresses
● order_number
● shipping address
● shipping address ID

Address
● ID
● City
● Street
● ...

Read and write to new
Drop old structures

