From the Monolith to

Microservices
Lessons from Google and eBay

Randy Shoup
@randyshoup
inkedin.com/in/randyshoup

Architecture
Evolution

« eBay
. 5™ generation today
. Monolithic Perl > Monolithic C++ = Java = microservices

e Twitter

. 39 generation today
. Monolithic Rails = JS / Rails / Scala = microservices

* AMazon

. Nth generation today
. Monolithic C++ = Java / Scala = microservices

Architecture
Evolution

The Monolith
Ecosystem of Services

Building and Operating a Service

Service Anti-Patterns

Architecture
Evolution

« The Monolith

The Monolithic
Architecture

2-3 monolithic tiers

« {JS,10S, Android} Presentation

+ {PHP. Ruby, Python} IENeJeliter:Ralelql

- {MySQL, Mongo} Database

The Monolithic
Application

Coordination overhead as team

Simple at first

grows
In-process latencies Poor enforcement of modularity
Single codebase, deploy unit Poor scaling (vertical only)

All-or-nothing deploy (downtime,

Resource-efficient at small scale .
failures)

Long build times

The Monolithic
Database

Simple at first

Join queries are easy

Single schema, deployment

Resource-efficient at small scale

Coupling over time

Poor scaling and redundancy (all-
or-nothing, vertical only)

Difficult to tune properly

All-or-nothing schema
management

“If you don’t end up regretting
your early technology
decisions, you probably over-
engineered”

-—-me

Architecture
Evolution

« Ecosystem of Services

Microservices

Single-purpose

Simple, well-defined interface

Modular and independent

Fullest expression of encapsulation and modularity

Isolated persistence (!)

—
—

_Cx

Microservices

Each unit is simple

Independent scaling and
performance

Independent testing and
deployment

Can optimally tune performance
(caching, replication, etc.)

Many cooperating units

Many small repos

Requires more sophisticated tooling
and dependency management

Network latencies

Ecosystem
of Services

Hundreds to thousands of
Independent services

Many layers of dependencies, QQEGD
- il

no strict tiers G @ Q

Graph of relationships, not a @
hierarchy

Google
Service Layering __

Cloud Datastore: NoSQL service Datastore

o Highly scalable and resilient
o Strong transactional consistency
o SQL-like rich query capabilities

Megastore
Megastore: geo-scale structured
database
o Multi-row transactions
o Synchronous cross-datacenter replication Bigtable

Bigtable: cluster-level structured storage
o (row, column, timestamp) -> cell contents
Colossus: next-generation clustered file Colossus
system
o Block distribution and replication

Borg: cluster management infrastructure
o Task scheduling, machine assignment

Evolution,
not Intelligent Design

No centralized, top-down design of the system

Variation and Natural selection

o Create / extract new services when needed to solve a problem
o Deprecate services when no longer used
o Services justify their existence through usage

Appearance of clean layering is an emergent
property

“Every service at Google is either
deprecated or not ready yet.”

-- Google engineering proverb

Architecture without an
Architect?

No “Architect” title / role

(+) No cenftral approval for technology decisions

o Most technology decisions made locally instead of globally
o Better decisions in the field

(-) eBay Architecture Review Board

o Central approval body for large-scale projects
o Usually far too late in the process to be valuable

o Experienced engineers saying “no"” after the fact vs. encoding knowledge
in a reusable library, tool, or service

Standardization

« Standardized communication

o Network protocols
o Data formats
o Interface schema / specification

 Standardized infrastructure

o Source control

o Configuration management

o Cluster management

o Monitoring, alerting, diagnosing, etc.

Standards become standards by
being better than the alternatives!

Service
Independence

* No standardization of service internals
o Programming languages
o Frameworks
o Persistence mechanisms

IN @ mature ecosystem of services,
we standardize the arcs of the
graph, not the nodes!

Architecture
Evolution

» Building and Operating a Service

Goals of a
Service Owner

« Meef the needs of my clienfs ...

. Functionality

. Quality

. Performance

. Stability and reliability

. Constant improvement over time

e ... Al minimum cost and effort

. Leverage common tools and infrastructure

. Leverage other services

. Automate building, deploying, and operating my service
. Optimize for efficient use of resources

Responsibilities of a
Service Owner

* End-to-end Ownership
o Team owns service from design to deployment to retirement
o No separate maintenance or sustaining engineering team
o DevOps philosophy of “You build it, you run it”

« Autonomy and Accountability

o Freedom to choose technology, methodology, working environment
o Responsibility for the results of those choices

Service as
Bounded Context

Primary focus on my service

o Clients which depend on my service
o Services which my service depends on
o Cognitive load is very bounded

Very little worry about Service

o The complete ecosystem
o The underlying infrastructure

= Small, nimble service teams

Service-Service
Relationships

* Vendor — Customer Relationship
o Friendly and cooperative, but structured
o Clear ownership and division of responsibility
o Customer can choose to use service or not (!)

« Service-Level Agreement (SLA)

o Promise of service levels by the provider
o Customer needs to be able to rely on the service, like a utility

Service-Service
Relationships

« Charging and Cost Allocation

Charge customers for *usage* of the service

Aligns economic incentives of customer and provider
Motivates both sides to optimize for efficiency

O
O
O
o (+) Pre-/ post-allocation at Google

Maintaining
Interface Stability

« Backward / forward compatibility of interfaces
Can *never* break your clients’ code

@)
o Often multiple interface versions

o Sometimes multiple deployments

o Majority of changes don’'t impact the interface in any way
« Explicit deprecation policy

o Strong incentive to wean customers off old versions (!)

Architecture
Evolution

« Service Anti-Patterns

Service
Anti-Patterns

 The “Mega-Service”
o Overbroad area of responsibility is difficult to reason about, change
o Leadsto more upstream / downstream dependencies

« Shared persistence
o Breaks encapsulation, encourages “backdoor” interface violations
o Unhealthy and near-invisible coupling of services
o (-) Initial eBay SOA efforts

Thank You!

@randyshoup
inkedin.com/in/randyshoup

Slides will be aft slideshare.net/randyshoup

