
From%the%Monolith%to%
Microservices%

Lessons%from%Google%and%eBay8

Randy Shoup
@randyshoup

linkedin.com/in/randyshoup

Architecture%
Evolution8

•  eBay

•  5th generation today
•  Monolithic Perl ! Monolithic C++ ! Java ! microservices

•  Twitter
•  3rd generation today
•  Monolithic Rails ! JS / Rails / Scala ! microservices

•  Amazon
•  Nth generation today
•  Monolithic C++ ! Java / Scala ! microservices

Architecture%
Evolution8

•  The Monolith

•  Ecosystem of Services

•  Building and Operating a Service

•  Service Anti-Patterns

Architecture%
Evolution8

•  The Monolith

•  Ecosystem of Services

•  Building and Operating a Service

•  Service Anti-Patterns

The%Monolithic%
Architecture8

2-3 monolithic tiers

•  {JS, iOS, Android}

•  {PHP, Ruby, Python}

•  {MySQL, Mongo}

Presentation8

Application8

Database8

The%Monolithic%
Application8

Simple%at%first8

InDprocess%latencies8

Single%codebase,%deploy%unit8

ResourceDefficient%at%small%scale8

Pros8

Coordination%overhead%as%team%
grows8

Poor%enforcement%of%modularity8

Poor%scaling%(vertical%only)8

AllDorDnothing%deploy%(downtime,%
failures)8

Long%build%times8

Cons8

The%Monolithic%%
Database8

Simple%at%first8

Join%queries%are%easy8

Single%schema,%deployment8

ResourceDefficient%at%small%scale8

Pros8

Coupling%over%time8

Poor%scaling%and%redundancy%(allD
orDnothing,%vertical%only)8

Difficult%to%tune%properly8

AllDorDnothing%schema%
management8

Cons8

“If%you%don’t%end%up%regrePing%
your%early%technology%
decisions,%you%probably%overD
engineered”8

-- me

Architecture%
Evolution8

•  The Monolith

•  Ecosystem of Services

•  Building and Operating a Service

•  Service Anti-Patterns

Microservices%
!

•  Single-purpose
•  Simple, well-defined interface
•  Modular and independent
•  Fullest expression of encapsulation and modularity
•  Isolated persistence (!)

A8

C8 D8 E8

B8

Microservices%
8

Each%unit%is%simple8

Independent%scaling%and%
performance8

Independent%testing%and%
deployment8

Can%optimally%tune%performance%
(caching,%replication,%etc.)8

Pros8

Many%cooperating%units8

Many%small%repos8

Requires%more%sophisticated%tooling%
and%dependency%management8

Network%latencies8

Cons8

Ecosystem%%
of%Services8

•  Hundreds to thousands of
independent services

•  Many layers of dependencies,
no strict tiers

•  Graph of relationships, not a
hierarchy

C8
B8

A8 E8
F8

G8
D8

Google%%
Service%Layering8

•  Cloud Datastore: NoSQL service
o  Highly scalable and resilient
o  Strong transactional consistency
o  SQL-like rich query capabilities

•  Megastore: geo-scale structured
database
o  Multi-row transactions
o  Synchronous cross-datacenter replication

•  Bigtable: cluster-level structured storage
o  (row, column, timestamp) -> cell contents

•  Colossus: next-generation clustered file
system
o  Block distribution and replication

•  Borg: cluster management infrastructure
o  Task scheduling, machine assignment

Cloud%
Datastore8

Megastore8

Bigtable8

Colossus8

Borg8

Evolution,%%
not%Intelligent%Design8

•  No centralized, top-down design of the system

•  Variation and Natural selection
o  Create / extract new services when needed to solve a problem
o  Deprecate services when no longer used
o  Services justify their existence through usage

•  Appearance of clean layering is an emergent
property

“Every service at Google is either
deprecated or not ready yet.”

 -- Google engineering proverb

Architecture%without%an%
Architect?8

•  No “Architect” title / role

•  (+) No central approval for technology decisions
o  Most technology decisions made locally instead of globally
o  Better decisions in the field

•  (-) eBay Architecture Review Board
o  Central approval body for large-scale projects
o  Usually far too late in the process to be valuable
o  Experienced engineers saying “no” after the fact vs. encoding knowledge

in a reusable library, tool, or service

Standardization8

•  Standardized communication
o  Network protocols
o  Data formats
o  Interface schema / specification

•  Standardized infrastructure
o  Source control
o  Configuration management
o  Cluster management
o  Monitoring, alerting, diagnosing, etc.

Standards become standards by
being better than the alternatives!

Service%
Independence8

•  No standardization of service internals

o  Programming languages
o  Frameworks
o  Persistence mechanisms

In a mature ecosystem of services,
we standardize the arcs of the
graph, not the nodes!

Architecture%
Evolution8

•  The Monolith

•  Ecosystem of Services

•  Building and Operating a Service

•  Service Anti-Patterns

Goals%of%a%%
Service%Owner8

•  Meet the needs of my clients …
•  Functionality
•  Quality
•  Performance
•  Stability and reliability
•  Constant improvement over time

•  … at minimum cost and effort
•  Leverage common tools and infrastructure
•  Leverage other services
•  Automate building, deploying, and operating my service
•  Optimize for efficient use of resources

Responsibilities%of%a%
Service%Owner8

•  End-to-end Ownership
o  Team owns service from design to deployment to retirement
o  No separate maintenance or sustaining engineering team
o  DevOps philosophy of “You build it, you run it”

•  Autonomy and Accountability

o  Freedom to choose technology, methodology, working environment
o  Responsibility for the results of those choices

Service%as%%
Bounded%Context8

•  Primary focus on my service
o  Clients which depend on my service
o  Services which my service depends on
o  Cognitive load is very bounded

•  Very little worry about

o  The complete ecosystem
o  The underlying infrastructure

•  " Small, nimble service teams

Service8

Client%
A8

Client%
B8

Client%
C8

ServiceDService%%
Relationships8

•  Vendor – Customer Relationship
o  Friendly and cooperative, but structured
o  Clear ownership and division of responsibility
o  Customer can choose to use service or not (!)

•  Service-Level Agreement (SLA)
o  Promise of service levels by the provider
o  Customer needs to be able to rely on the service, like a utility

ServiceDService%%
Relationships8

•  Charging and Cost Allocation
o  Charge customers for *usage* of the service
o  Aligns economic incentives of customer and provider
o  Motivates both sides to optimize for efficiency
o  (+) Pre- / post-allocation at Google

Maintaining%%
Interface%Stability8

•  Backward / forward compatibility of interfaces

o  Can *never* break your clients’ code
o  Often multiple interface versions
o  Sometimes multiple deployments

o  Majority of changes don’t impact the interface in any way

•  Explicit deprecation policy
o  Strong incentive to wean customers off old versions (!)

Architecture%
Evolution8

•  The Monolith

•  Ecosystem of Services

•  Building and Operating a Service

•  Service Anti-Patterns

Service%
AntiDPaPerns8

•  The “Mega-Service”
o  Overbroad area of responsibility is difficult to reason about, change
o  Leads to more upstream / downstream dependencies

•  Shared persistence
o  Breaks encapsulation, encourages “backdoor” interface violations
o  Unhealthy and near-invisible coupling of services
o  (-) Initial eBay SOA efforts

Thank%You!8

•  @randyshoup

•  linkedin.com/in/randyshoup

•  Slides will be at slideshare.net/randyshoup

