
Architecting for the

@axelfontaine

Cloud

About Axel Fontaine

• Founder and CEO of Boxfuse

• Over 15 years industry experience

• Continuous Delivery expert

• Regular speaker at tech conferences

• JavaOne RockStar in 2014

@axelfontaine

flywaydb.org

boxfuse.com

about

questions

POLL:
what type of infrastructure are you running on?

• On Premise

• Colocation

• Root Server

• Cloud

what is special about the cloud ??

Every day, AWS adds
enough server capacity
to power the whole $7B
enterprise Amazon.com
was in 2004.
Weekends included.

"Advanced Test Reactor" by Argonne National Laboratory -
originally posted to Flickr as Advanced Test Reactor core,
Idaho National LaboratoryUploaded using F2ComButton.
Licensed under CC BY-SA 2.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Advanced_Test_Reac
tor.jpg#mediaviewer/File:Advanced_Test_Reactor.jpg

"RIAN archive 341194 Kursk Nuclear Power Plant" by RIA
Novosti archive, image #341194 / Sergey Pyatakov / CC-BY-SA
3.0. Licensed under CC BY-SA 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:RIAN_archive_341194_
Kursk_Nuclear_Power_Plant.jpg#mediaviewer/File:RIAN_archi
ve_341194_Kursk_Nuclear_Power_Plant.jpg

Control Plane Data Plane

Control Plane Data Plane

 Shift to a world of abundance
(no more resource scarcity)

 Clean Control Plane/Data Plane split
with API-based provisioning

 Cost-based Architectures
with the ability to turn infrastructure off

benefits of the cloud

moving to the cloud

lift & shift
(= the naïve approach)

Congratulations! You now have:

• A more expense Hetzner/OVH

• Lots of (too much?) trust
in your cloud provider

• Potential legal trouble
due to data privacy laws

lift & shift
(= the naïve approach)

understanding the cloud

regions

availability zones

<<IMAGE GERMANY + two small clouds with racks>>

building blocks

http://en.wikipedia.org/wiki/Lego#/media/File:Lego_Color_Bricks.jpg

building blocks

Security

Storage NetworkCompute

The hard Truth about Security

1. Always breakable with infinite time & resources

2. Must make it more complicated/expensive to break

than it’s worth (use defense in depth!)

3. Has a usability cost

4. Almost always about the data

the 3 states of data

Data at Rest Data in MotionData in Use

Trusting your neighbors
is good. But it’s even
better to put a good
lock on the door.

Werner Vogels
CTO of an online book shop

http://en.wikipedia.org/wiki/Werner_Vogels#/media/File:Wernervogels_ddp.jpg

Data in Motion

TLS / SSL

Data in Use & at Rest

Client-side
encryption

Client-side encryption

 Encrypt sensitive & personally identifiable data

 Use different Encryption key for each field/record

 Encrypt Encryption Key using Key encrypting Key

 Secure & Rotate the Key encrypting Key

Key Management

In App
€

KMS
€€

HSM
€€€€€

Querying Encrypted Data

Other
clear text

field

Id Encrypted

123 #!azw\b

456 67ftf6&)

Exact Match
=> Hmac

Hmac Encrypted

5841545832 #!azw\b

0219237127 67ftf6&)

Range
=> Lower fidelity

Low Fi Encrypted

48.5 #!azw\b

37.2 67ftf6&)

=> Use transparent persistence layer converters!

Compute

POLL:
which level of automation are you at?

• Build
• Unit Tests
• Continuous Integration
• Acceptance Tests
• Continuous Deployment (Code)
• Continuous Deployment (Code + DB + Configuration)
• Infrastructure

Build Test

Build Test

• One immutable unit
• Regenerated after every change
• Promoted from Environment to Environment

Classic Mistake: Build per Environment

Image Instance

Fully Baked Provisioned on
Startup

?

Fully Baked Provisioned on
Startup

Most people

 Every Instance 100% identical

 Fastest startup

 Launch always succeeds

Fully Baked Provisioned on
Startup

Most people

 One immutable unit

 Regenerated after every change

 Promoted from environment to environment

Fully Baked

 One immutable unit

 Regenerated after every change

 Promoted from environment to environment

Image

 One immutable unit

 Regenerated after every change

 Promoted from environment to environment

Fully Baked

 One immutable unit

 Regenerated after every change

 Promoted from environment to environment

Image

Fully Baked

Image Instance

keep your instances stateless

high uptime is a liability

The longer an instance is up,
the harder it becomes to recreate exactly

(and it will fail eventually!)

Focus shift

Individual instances become disposable

Instance Service

Treat servers like cattle instead of pets

What are the implications ???

scaling

Image Instance

types of scaling

up

down

in out

scaling triggers for different types of services

sync
=> load

async
=> queue depth

cron
=> time

scaling & costs

vs

prefer smaller granularity

instance types

General
Purpose

CPU

RAM

Disk

How to solve service discovery ?

Use a stable entry point with an internal registry

Instance

Instance

Instance

? Elastic
Load

Balancer

• Bake as much configuration as
possible for all environments
directly in the Image

• Use environment detection
and auto-configuration

• Pass remaining configuration
at startup and expose it as
environment variables

Key Value

JDBC_URL jdbc:…

ENV prod

what about configuration ???

what about the database ???

• Keep all persistent state out of the instance,
including the database

• Use one of the many good hosted solutions
available like Amazon RDS or Google Cloud SQL

• Use a database migration tool to update the
schema on application startup

Instance

what about the logs ???
LOG
file

LOG
file

LOG
file

ssh me@myserver1
tail -f server.log

ssh me@myserver2
tail -f server.log

ssh me@myserver3
tail -f server.log

LOG
file

LOG
file

LOG
file log server

Ship logs to a central log server

where they can be
• aggregated
• stored and backuped
• indexed
• searched through a nice web UI

Many good hosted solutions
• Loggly
• Logentries
• Papertrail
• …

=> Think about data privacy!

what about sessions ???

Keep session in an encrypted and signed cookie

• avoids session timeouts
• avoids server clustering & session replication
• avoids sticky sessions & server affinity

what about rolling out new versions ???

Load
Balancer

App
v1

App
v1

Logs

Availability Zone 1

Availability Zone 2

Load
Balancer

App
v1

App
v1

Logs

Availability Zone 1

Availability Zone 2

Load
Balancer

App
v2

App
v1

App
v2

App
v1

Logs

Availability Zone 1

Availability Zone 2

Load
Balancer

App
v2

App
v1

App
v2

App
v1

Logs

Availability Zone 1

Availability Zone 2

what about containers ???

understanding modern CPUs

Both Intel and AMD have
hardware support for virtualization

• isolation
• performance

Image

Hardware

Hypervisor

Image

Hardware

OS+Container
Runtime

ContainerVM

on prem

your
responsibility

cloud

your
responsibility

cloud
responsibilityinstance

scheduling
machine
images

instances instance
volumes

instance
networking

container
scheduling

container
images

containers container
volumes

container
networking

Only makes sense if
you cannot afford

8.75€/month
granularity

cloud

your
responsibility

cloud
responsibilityinstance

scheduling
machine
images

instances instance
volumes

instance
networking

container
scheduling

container
images

containers container
volumes

container
networking

Only makes sense if
you cannot afford

0.01€/hour
granularity

summary

 Put a good lock on the door (use encryption!)

 Use fully baked images (build once!)

 Treat servers like cattle (disposable!)

boxfuse.com

• Fully baked images generated in seconds
(not minutes or hours)

• Optimized for JVM apps
(Spring Boot, Dropwizard, Tomcat, TomEE, ...)

• Minimal images just 1% of size of regular OS
(measured in MB not GB)

• Images work on VirtualBox & AWS
(environment parity from dev to prod)

• Zero downtime updates on AWS
(fully automatic blue/green deployments)

final disclaimer

no animals were harmed
while making this talk 

Thanks !

@axelfontaine

boxfuse.com

