
1@briandorsey #kubernetes #GOTOber

2@briandorsey #kubernetes #GOTOber

Changing the way we think and talk about computing

Kubernetes

GOTO Berlin - December 2015

3@briandorsey #kubernetes #GOTOber

What is this talk?
Container

4@briandorsey #kubernetes #GOTOber

Brian Dorsey
Developer Advocate - Google Cloud platform

+BrianDorsey

@briandorsey

5@briandorsey #kubernetes #GOTOber

Containers? Yes/No
if yes GOTO slide 7;

if no GOTO slide 15;

Containers

7@briandorsey #kubernetes #GOTOber

The Old Way: Shared Machines

No isolation

No namespacing

Common libs

Highly coupled apps and OS

Bare Metal

kernel

libs

app

app app

app

8@briandorsey #kubernetes #GOTOber

The Old Way: Virtual Machines

Some isolation

Expensive and inefficient

Still highly coupled to the guest OS

Hard to manage

Hypervisor

kernel

libs

app

kernel

libs

app

kernel

libs

app

kernel

libs

app

9@briandorsey #kubernetes #GOTOber

The New Way: Containers

App specific isolation

Lightweight & efficient

Independent of the host

Linux distribution

… Lots of containers to manage

Hypervisor

libs

app

libs

app

libs

app

libs

app

kernel

10@briandorsey #kubernetes #GOTOber

Container Images

● An image is a stack of Read-Only file
system layers.

● Usual process:
○ build
○ push to repository
○ pull to execution host
○ start container from image Debian

App

PHP & Apache

Libs

11@briandorsey #kubernetes #GOTOber

Image Layers
Read / Write

● A container is a process
○ started with kernel restrictions
○ a stack of shared Read-Only

file system layers
○ plus a process specific Read-

Write layer

● Every new container gets a new
Read-Write later. All containers
from the same image start from
exactly the same state!

Read / Write Read / Write

Debian

App

PHP & Apache

Libs

12@briandorsey #kubernetes #GOTOber

Mounting Host Directories
● It's possible to mount host

directories into a container's
filesystem.

● These are mutable and do outlive
the container.

● They're only available on that host.

Read /
Write

host
dir

Debian

App

PHP & Apache

Libs

13@briandorsey #kubernetes #GOTOber

Why containers?
• Performance

• Repeatability

• Quality of service

• Accounting

• Portability

A fundamentally different way of
managing applications

Images by Connie
Zhou

14@briandorsey #kubernetes #GOTOber

Containers are awesome!
Let’s run lots of them!

Kubernetes

16@briandorsey #kubernetes #GOTOber

Physical Computers

Virtual Machines

PaaS

17@briandorsey #kubernetes #GOTOber

Physical Computers

Virtual Machines

Container Clusters

PaaS

18@briandorsey #kubernetes #GOTOber

Kubernetes
Greek for “Helmsman”; also the root of the words
“governor” and “cybernetic”

• Runs and manages containers

• Inspired and informed by Google’s experiences
and internal systems

• Supports multiple cloud and bare-metal
environments

• Supports multiple container runtimes

• 100% Open source, written in Go

Manage applications, not machines

19@briandorsey #kubernetes #GOTOber

Everything at Google runs in
containers:
• Gmail, Web Search, Maps, ...
• MapReduce, batch, ...
• GFS, Colossus, ...
• Even Google’s Cloud Platform:

VMs run in containers!

20@briandorsey #kubernetes #GOTOber

Everything at Google runs in
containers:
• Gmail, Web Search, Maps, ...
• MapReduce, batch, ...
• GFS, Colossus, ...
• Even Google’s Cloud Platform:

VMs run in containers!

We launch over 2 billion
containers per week

21@briandorsey #kubernetes #GOTOber

A toolkit for running distributed systems in production

co-locating helper processes

mounting storage systems

distributing secrets

application health checking

replicating application instances

horizontal auto-scaling

naming and discovery

load balancing

rolling updates

resource monitoring

log access and ingestion

support for introspection and debugging

22@briandorsey #kubernetes #GOTOber

Start with a Cluster

Laptop to high-availability multi-node cluster

Hosted or self managed

On-Premise or Cloud

Bare Metal or Virtual Machines

Most OSes (inc. RedHat Atomic, Fedora, CentOS)

Or just a bunch of Raspberry PIs

Many options, See Matrix for details

Kubernetes Cluster Matrix: http://bit.ly/1MmhpMW

23@briandorsey #kubernetes #GOTOber

Kubelet Kubelet Kubelet

Kubernetes Master

Scheduler

API Server

Start with a Cluster

24@briandorsey #kubernetes #GOTOber

Setting up a cluster

● Choose a platform: GCE, AWS, Azure, Rackspace, Ubuntu, Juju …
○ Then run:

export KUBERNETES_PROVIDER=<your_provider>; curl -sS https://get.k8s.io | bash

● Or choose a distro such as RedHat Atomic, CoreOS Tectonic, Mirantis
Murano (OpenStack), Mesos

● Or use a recipes for bare metal configurations for Centos, Fedora, etc
● Use a hosted option such as Google Container Engine

25@briandorsey #kubernetes #GOTOber

Deploy containers

$ kubectl run my-nginx --image=nginx --replicas=2 --port=80

26@briandorsey #kubernetes #GOTOber

27@briandorsey #kubernetes #GOTOber

The atom of scheduling for containers

An application specific logical host

Hosts containers and volumes

Each has its own routable IP address
(no NAT)

Ephemeral
• Pods are functionally identical and therefore

ephemeral and replaceable Pod

Web Server

Volume

Consumers

A pod of whales containers

28@briandorsey #kubernetes #GOTOber

Pods

Pod

Git
Synchronizer

Node.js App
Container

Volume

Consumersgit RepoCan be used to group multiple containers &
shared volumes

Containers within a pod are tightly coupled

Shared namespaces
• Containers in a pod share IP, port and IPC

namespaces
• Containers in a pod talk to each other through

localhost

29@briandorsey #kubernetes #GOTOber

Pod Networking (across nodes)

Pods have IPs which are routable

Pods can reach each other without NAT
 Even across nodes

No Brokering of Port Numbers

These are fundamental requirements

Many solutions
 Flannel, Weave, OpenVSwitch,

Cloud Provider

10.1.2.0/24

10.1.1.0/24

10.1.1.211 10.1.1.2

10.1.2.106

10.1.3.0/24

10.1.3.4510.1.3.17

10.1.3.0/24

30@briandorsey #kubernetes #GOTOber

Create a service

$ kubectl expose rc my-nginx --port=80 --type=LoadBalancer

31@briandorsey #kubernetes #GOTOber

Client

Pod

Container

Pod

Container

Pod

ContainerContainer

A logical grouping of pods that perform the
same function

• grouped by label selector

Load balances incoming requests across
constituent pods

Choice of pod is random but supports
session affinity (ClientIP)

Gets a stable virtual IP and port
• also a DNS name

Services

Service

Label selector:
 type = FE

VIP

type = FE type = FE type = FE

32@briandorsey #kubernetes #GOTOber

Dashboard

show: type = FE

Pod Pod

frontend

Pod

frontend

Pod Pod

Dashboard

show: version = v2
type = FE

version = v2
type = FE version = v2

● Metadata with semantic meaning
● Membership identifier
● The only Grouping Mechanism

Behavior Benefits

➔ Allow for intent of many users (e.g. dashboards)
➔ Build higher level systems …
➔ Queryable by Selectors

Labels ← These are important

33@briandorsey #kubernetes #GOTOber

Replication
Controller

Pod Pod

frontend

Pod

frontend

Pod Pod

Replication
Controller

#pods = 1
version = v2

show: version = v2

version= v1 version = v1 version = v2

Replication
Controller

#pods = 2
version = v1

show: version = v2 Behavior Benefits

● Keeps Pods running
● Gives direct control of Pod #s
● Grouped by Label Selector

➔ Recreates Pods, maintains desired state
➔ Fine-grained control for scaling
➔ Standard grouping semantics

Replication Controllers

34@briandorsey #kubernetes #GOTOber

Replication Controller

Replication Controller
- Name = “backend”
- Selector = {“name”: “backend”}
- Template = { ... }
- NumReplicas = 4

API Server

3

Start 1
more

OK 4

How
many?

How
many?

Canonical example of control loops

Have one job: ensure N copies of a pod
● if too few, start new ones
● if too many, kill some
● group == selector

Replicated pods are fungible
● No implied order or identity

Replication Controllers

Managing
Deployments

36@briandorsey #kubernetes #GOTOber

Scale

$ kubectl scale rc my-nginx --replicas=5

37@briandorsey #kubernetes #GOTOber

Service

Label selectors:
 version = 1.0
 type = Frontend

Service
name = frontend

Label selector:
 type = FE

Replication
Controller Pod

frontend

Pod

version= v1 version = v1

Replication
Controller
version = v1
type = FE
#pods = 1

show: version = v2

type = FE type = FE

Scaling Example

Pod

frontend

Pod

version = v1
type = FE

Replication
Controller
version = v1
type = FE
#pods = 2

show: version = v2

Pod Pod

Replication
Controller
version = v1
type = FE
#pods = 4

show: version = v2

version = v1
type = FE

38@briandorsey #kubernetes #GOTOber

Service

Label selectors:
 version = 1.0
 type = Frontend

Service
name = backend

Label selector:
 type = BE

Replication
Controller

Pod Pod

frontend

Pod

version= v1 version = v1

Replication
Controller
version = v1
type = BE
#pods = 2

show: version = v2

type = BE type = BE

Canary

Replication
Controller
Replication
Controller
version = v2
type = BE
#pods = 1

show: version = v2

Pod

frontend

Pod

version = v2
type = BE

39@briandorsey #kubernetes #GOTOber

Rolling Update

$ kubectl rolling-update frontend --image=frontend:v2

40@briandorsey #kubernetes #GOTOber

Rolling Update

Service

Label selectors:
 version = 1.0
 type = Frontend

Service
name = backend

Label selector:
 type = BE

Replication
Controller

Pod Pod

frontend

Pod

version= v1 version = v1

Replication
Controller
version = v1
type = BE
#pods = 2

show: version = v2

type = BE type = BE

Replication
Controller
version = v2
type = BE
#pods = 2

show: version = v2

Pod

version = v2
type = BE

version = v2

41@briandorsey #kubernetes #GOTOber

Autoscale

$ kubectl autoscale rc frontend --min=1 --max=20

42@briandorsey #kubernetes #GOTOber

Pod Horizontal Autoscaling Beta (1.1)

Replication
Controller Pod

frontend

Pod

name=locust name=locust

Replication
Controller
name=locust
role=worker
#pods = 1

show: version = v2

Pod

frontend

Pod

name=locust

Replication
Controller
name=locust
role=worker
#pods = 2

show: version = v2

Pod Pod

name=locust

Scale
CPU Target% = 50 Heapster

role=worker role=worker role=worker role=worker

Replication
Controller
name=locust
role=worker
#pods = 4

70% CPU 40% CPU

> 50% CPU< 50% CPU

Managing State

44@briandorsey #kubernetes #GOTOber

I still have questions about state!

In a cluster of ephemeral containers

Application state must exist outside of the container

Database

45@briandorsey #kubernetes #GOTOber

Bound to the Pod that encloses it

Look like Directories to Containers

What and where they are determined
by Volume Type

Many Volume options

Volumes

Pod EmptyDir
 HostPath
 nfs, iSCSI (and similar services)
 Cloud Provider Block Storage

46@briandorsey #kubernetes #GOTOber

Outside the Cluster

App Pod App Pod App Pod

App Pod App Pod App Pod

App Pod App Pod App Pod

e.g.: MySQL managed by
DBAs or managed cloud
services

Database

47@briandorsey #kubernetes #GOTOber

Adapt to run in the Cluster

Database

App Pod App Pod App Pod

App Pod App Pod App Pod

App Pod App Pod App Pod

e.g.: MySQL runs in a pod
and mounts a filesystem
provided by the cluster

48@briandorsey #kubernetes #GOTOber

Cluster Native

App Pod App Pod App Pod

App Pod App Pod App Pod

App Pod App Pod App Pod

ex: run Cassandra or Riak inside
the cluster

49@briandorsey #kubernetes #GOTOber

Cluster native - MySQL on Vitess

Open source MySQL scaling solution

Vitess has been serving all YouTube
database traffic since 2011

Replication, dynamic sharding,
caching and more

Designed for a distributed,
containerized world

Kubernetes configs included
http://vitess.io/

50@briandorsey #kubernetes #GOTOber

Secrets

Problem: how to grant a pod access to a
secured something?
● don’t put secrets in the container image!

12-factor says: config comes from the
environment
● Kubernetes is the environment

Manage secrets via the Kubernetes API

Inject them as virtual volumes into Pods
● late-binding
● tmpfs - never touches disk

node

Secret Pod

App Pod

Wrap-up

52@briandorsey #kubernetes #GOTOber

Open sourced in June, 2014

v1.0 in July, 2015, v1.1 in November 2015

Google Container Engine (GKE)
● hosted Kubernetes - don’t think about cluster setup
● GA in August, 2015

PaaSes:
● RedHat OpenShift, Deis, Stratos

Distros:
● CoreOS Tectonic, Mirantis Murano (OpenStack), RedHat

Atomic, Mesos

Working towards a 1.2 release

 Kubernetes status & plans

53@briandorsey #kubernetes #GOTOber

Google Container Engine (GA) -- Demo
Managed Kubernetes (Kubernetes v1.1)

Manages Kubernetes master uptime

Manages Updates

Cluster Resize via Managed Instance Groups

Cluster Node Autoscaling

Centralized Logging

Google Cloud VPN support

54@briandorsey #kubernetes #GOTOber

Kubernetes is Open Source
We want your help!

http://kubernetes.io

https://github.com/GoogleCloudPlatform/kubernetes

Slack: #kubernetes-users

@kubernetesio

http://kubernetes.io
http://kubernetes.io
https://github.com/GoogleCloudPlatform/kubernetes
https://github.com/GoogleCloudPlatform/kubernetes

55@briandorsey #kubernetes #GOTOber

Physical Computers

Virtual Machines

Container Clusters

PaaS

Your

app?

56@briandorsey #kubernetes #GOTOber

Tweet questions afterwards to:
@briandorsey

Slides: goo.gl/NI1GaM

Questions

https://goo.gl/NI1GaM

57@briandorsey #kubernetes #GOTOber

