


High Throughput
Horizontally Scalable

Workflow

Daniel Meyer
@MeyerDan



Daniel Meyer
Technical lead 
Camunda BPM

Twitter:
@MeyerDan

Blog: 
http://long-running.net

3



@MeyerDan | Camunda

What is Camunda BPM?

References

Camunda BPM is an Open Source platform for Business Process 
Management and allows you to model and execute BPMN, CMMN 
and DMN.

References in the US: AT&T, Financial Regulatory Authority (FINRA), Sony DADC, Spartasystems, …

4



@MeyerDan | Camunda

Great, but what if?

What if we could build a workflow engine with the following properties:

● Up to 100x better throughput (compared to current generation)

● Horizontally scalable

● Seamlessly easy to operate at small and large scale

5



@MeyerDan | Camunda

Why this Talk?
We need your help to make the right decisions.

We need feedback on these issues and we want to start conversations with 
potential early adopters.

We are an open source project.

6



@MeyerDan | Camunda

1. Why another Workflow Implementation?
2. How to design this?

7



@MeyerDan | Camunda

Workflow engines could be
much faster

8



@MeyerDan | Camunda

Throughput: Messaging vs. Workflow
ops / second

Messaging Workflow

persistent messaging systems > 100x
better throughput on same hardware100K

1K

9



@MeyerDan | Camunda

Workflow engines could be
horizontally scalable

10



@MeyerDan | Camunda

Horizontal Scalability

Databases Messaging
Systems

Workflow

Next Step!

11



@MeyerDan | Camunda

Performance matters

12



@MeyerDan | Camunda

There is more and more stuff
More and more users produce more and more data and expect increasingly faster 
and better service.

IoT is coming: 25 billion connected things in 2020 says Gartner.

New, innovative business models will intensify the usage and push data volumes.

13

http://www.gartner.com/newsroom/id/2905717


@MeyerDan | Camunda

BPM can play a key role in this transformation

BPM (Business Process Management) allows Business Analysts, Domain Experts 
and Developers to collaborate.

14



@MeyerDan | Camunda

Workflow Engines could be
much more modular

15



@MeyerDan | Camunda

Workflow

Human Task 
Management

Connectors for 
Services and 
other APIs

Timers and 
Schedules

Message and 
Event Correlation

History and Audit
Log

Repository

Business Decision 
Management

Current Camunda BPM Platform

Identity 
Management

16



@MeyerDan | Camunda 17



@MeyerDan | Camunda

Modularity 
A modular approach allows users

- choose only the components you really need
- scale components individually
- distribute components individually
- use different persistence technology for different components

Yet, it can be simple to use all the components as “one stack”.

18



@MeyerDan | Camunda

Why yet another Workflow 
Implementation?

19



@MeyerDan | Camunda

Because
we can do so much better.

20



@MeyerDan | Camunda

1. Why another Workflow Implementation?
2. How to design this?

21



@MeyerDan | Camunda

How does Camunda 7 work?

22



@MeyerDan | Camunda

Incoming 
message

Correlate Message

23



@MeyerDan | Camunda

Unmarshal

SELECT 

Correlate Restore 
state

many
SELECTs

Advance in 
Process

Flush 
Updates

INSERT,
UPDATE,
DELETE

Incoming 
Req

Correlate Message

Relational Database

Java WF
Engine

highly optimized

synchronous (single thread, all blocking I/O)

Marshall
Response

Outgoing 
Resp.

24



@MeyerDan | Camunda

Mutual Exclusion

“Racing incoming Signals”

25



@MeyerDan | Camunda

SELECT 

CorrelateUnmarshal Restore 
state

many
SELECTs

Advance in 
Process

Flush 
Updates

INSERT,
UPDATE,
DELETE

Incoming 
message

Marshall
Response

Mutual Exclusion

Relational Database

Outgoing 
Resp.

Java WF
Engine

Fail with
Optimistic Locking 
Exception

Transaction

26



@MeyerDan | Camunda

Same Mechanics for all concurrency “Conflicts”

“Racing incoming Signals” Synchronization

27



@MeyerDan | Camunda

Good Reasons for this Design

Engine 1 Engine n...

Shared Database

Very simple 
Clustering Model

Stateless

Relational 
Database

solves all the “hard 
problems”

Good integration into 
transactional + Thread 
oriented Programing 

Models

(Spring, Java EE, …)

28



@MeyerDan | Camunda

Downsides
- Cannot really move away from RDBMS
- Not “hardware friendly”
- Inadequate outside of transactional programming model

(OLEs with non-transactional side effects)

=> Slow and limited in scalability

29



@MeyerDan | Camunda

How can we move past this?

30



@MeyerDan | Camunda 31

Incoming 
message

Outgoing 
Resp.

Critical Path



@MeyerDan | Camunda

Take all “secondary features” out of the critical path

● History / Audit log
● Human Tasks
● Service Invocations
● Sync I/O
● ...

=> Do these asynchronously

32



@MeyerDan | Camunda

Employ the single writer principle

● There can be only one thread which is able to change the state of a Workflow 
Instance

● Use intelligent correlation to route messages to this thread

=> No concurrency conflicts
=> No locks either (neither optimistic nor pessimistic) 

33



@MeyerDan | Camunda

Use Batch I/O around the critical path to amortize on expensive I/O costs.

● First level of persistence can be a filesystem journal
● Fault tolerance
● Second level (cold store) is an actual database. Written to asynchronously, 

out of the critical path, actual waitstates only. 

34



@MeyerDan | Camunda

Compose the system out of simple, single purpose agents which communicate 
using bounded queues / ring buffers

● simple code = fast code
● cache friendly
● use modern CPUs and Memory Subsystems efficiently

35



@MeyerDan | Camunda

Current Status
Working on prototypes.

Start discussions with potential early adopters.

Talking here today ... :)

36



@MeyerDan | Camunda

We need your Input!

Online survey:
https://goo.gl/sShBvy

Comment on my Blog: http://long-running.net

37



@MeyerDan | Camunda 38


