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What is Camunda BPM?

References

Camunda BPM is an Open Source platform for Business Process 
Management and allows you to model and execute BPMN, CMMN 
and DMN.

References in the US: AT&T, Financial Regulatory Authority (FINRA), Sony DADC, Spartasystems, …

4



@MeyerDan | Camunda

Great, but what if?

What if we could build a workflow engine with the following properties:

● Up to 100x better throughput (compared to current generation)

● Horizontally scalable

● Seamlessly easy to operate at small and large scale
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Why this Talk?
We need your help to make the right decisions.

We need feedback on these issues and we want to start conversations with 
potential early adopters.

We are an open source project.
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1. Why another Workflow Implementation?
2. How to design this?
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Workflow engines could be
much faster
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Throughput: Messaging vs. Workflow
ops / second

Messaging Workflow

persistent messaging systems > 100x
better throughput on same hardware100K

1K
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Workflow engines could be
horizontally scalable
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Horizontal Scalability

Databases Messaging
Systems

Workflow

Next Step!
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Performance matters
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There is more and more stuff
More and more users produce more and more data and expect increasingly faster 
and better service.

IoT is coming: 25 billion connected things in 2020 says Gartner.

New, innovative business models will intensify the usage and push data volumes.
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BPM can play a key role in this transformation

BPM (Business Process Management) allows Business Analysts, Domain Experts 
and Developers to collaborate.
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Workflow Engines could be
much more modular
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Workflow

Human Task 
Management

Connectors for 
Services and 
other APIs

Timers and 
Schedules

Message and 
Event Correlation

History and Audit
Log

Repository

Business Decision 
Management

Current Camunda BPM Platform

Identity 
Management
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Modularity 
A modular approach allows users

- choose only the components you really need
- scale components individually
- distribute components individually
- use different persistence technology for different components

Yet, it can be simple to use all the components as “one stack”.
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Why yet another Workflow 
Implementation?
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Because
we can do so much better.
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1. Why another Workflow Implementation?
2. How to design this?
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How does Camunda 7 work?
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Incoming 
message

Correlate Message
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Unmarshal

SELECT 

Correlate Restore 
state

many
SELECTs

Advance in 
Process

Flush 
Updates

INSERT,
UPDATE,
DELETE

Incoming 
Req

Correlate Message

Relational Database

Java WF
Engine

highly optimized

synchronous (single thread, all blocking I/O)

Marshall
Response

Outgoing 
Resp.
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Mutual Exclusion

“Racing incoming Signals”
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SELECT 

CorrelateUnmarshal Restore 
state

many
SELECTs

Advance in 
Process

Flush 
Updates

INSERT,
UPDATE,
DELETE

Incoming 
message

Marshall
Response

Mutual Exclusion

Relational Database

Outgoing 
Resp.

Java WF
Engine

Fail with
Optimistic Locking 
Exception

Transaction

26



@MeyerDan | Camunda

Same Mechanics for all concurrency “Conflicts”

“Racing incoming Signals” Synchronization
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Good Reasons for this Design

Engine 1 Engine n...

Shared Database

Very simple 
Clustering Model

Stateless

Relational 
Database

solves all the “hard 
problems”

Good integration into 
transactional + Thread 
oriented Programing 

Models

(Spring, Java EE, …)
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Downsides
- Cannot really move away from RDBMS
- Not “hardware friendly”
- Inadequate outside of transactional programming model

(OLEs with non-transactional side effects)

=> Slow and limited in scalability

29



@MeyerDan | Camunda

How can we move past this?
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Incoming 
message

Outgoing 
Resp.

Critical Path
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Take all “secondary features” out of the critical path

● History / Audit log
● Human Tasks
● Service Invocations
● Sync I/O
● ...

=> Do these asynchronously
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Employ the single writer principle

● There can be only one thread which is able to change the state of a Workflow 
Instance

● Use intelligent correlation to route messages to this thread

=> No concurrency conflicts
=> No locks either (neither optimistic nor pessimistic) 
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Use Batch I/O around the critical path to amortize on expensive I/O costs.

● First level of persistence can be a filesystem journal
● Fault tolerance
● Second level (cold store) is an actual database. Written to asynchronously, 

out of the critical path, actual waitstates only. 

34



@MeyerDan | Camunda

Compose the system out of simple, single purpose agents which communicate 
using bounded queues / ring buffers

● simple code = fast code
● cache friendly
● use modern CPUs and Memory Subsystems efficiently
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Current Status
Working on prototypes.

Start discussions with potential early adopters.

Talking here today ... :)
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We need your Input!

Online survey:
https://goo.gl/sShBvy

Comment on my Blog: http://long-running.net
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