

Functional Reactive Programming
in Games

Elise Huard - CodeMesh 2015

What

FRP

Elerea https://github.com/cobbpg/elerea

data Signal a
 Monad, Applicative, Functor

data SignalGen a
 Monad, Applicative, Functor, MonadFix

t

https://github.com/cobbpg/elerea

The Salespitch

game :: RandomGen t
 => Signal (Bool, Bool, Bool, Bool)
 -> t
 -> SignalGen (IO ())
game directionKey randomGenerator = mdo
 randomNumber <- stateful (undefined, randomGenerator) nextRandom
 player <- transfer2 initialPlayer (movePlayer 10) directionKey gameOver'
 monster <- transfer3 initialMonster wanderOrHunt player randomNumber gameOver'
 gameOver <- memo (playerEaten <$> player <*> monster)
 gameOver' <- delay False gameOver
 return $ renderFrame win glossState <$> player <*> monster <*> gameOver

start :: SignalGen (Signal a)
 -> IO (IO a)

network <- start $ game directionKey randomGenerator
fix $ \loop -> do
 readInput win directionKeySink
 join network
 threadDelay 20000
 esc <- exitKeyPressed win
 unless esc loop

(directionKey, directionKeySink) <-
 external (False, False, False, False)

(l,r,u,d) <- (,,,) <$> keyIsPressed window Key'Left
 <*> keyIsPressed window Key'Right
 <*> keyIsPressed window Key'Up
 <*> keyIsPressed window Key'Down
directionKeySink (l, r, u, d)

simpleSignal <- stateful 2 (+3)

randomNumber <- stateful (undefined, randomGenerator) nextRandom

player <-
 transfer2 initialPlayer
 movePlayer
 directionKey
 gameOver’

monster <-
 transfer3 initialMonster
 wanderOrHunt
 player
 randomNumber
 gameOver’

gameState = GameState <$> renderState <*> soundState

game :: RandomGen t
 => Signal (Bool, Bool, Bool, Bool)
 -> t
 -> SignalGen (IO ())
game directionKey randomGenerator = mdo
 player <- transfer2 initialPlayer (movePlayer 10) directionKey gameOver'
 randomNumber <- stateful (undefined, randomGenerator) nextRandom
 monster <- transfer3 initialMonster wanderOrHunt player randomNumber gameOver'
 gameOver <- memo (playerEaten <$> player <*> monster)
 gameOver' <- delay False gameOver
 return $ renderFrame win glossState <$> player <*> monster <*> gameOver

Subnetworks

generator :: Signal (SignalGen a)
 -> SignalGen (Signal a)

playLevel :: Signal (Bool, Bool, Bool, Bool) -- event signals
 -> LevelNumber -- pattern match on level number
 -> Score
 -> Health
 -> SignalGen (Signal GameState, Signal Bool)

-- in playGame main function
(gameState, levelTrigger) <-
 switcher $ playLevel directionKey <$> levelCount' <*> score' <*> lives'

dynamic networks

Signal [Bolt]

bolts <- transfer2 []
 manageBolts
 shootKey
 player

SignalGen [Signal Bolt]

let bolt direction range startPosition =
 stateful (Bolt startPosition direction range False) moveBolt
 mkShot shot currentPlayer = if hasAny shot
 then (:[]) <$> bolt (dirFrom shot) boltRange (position currentPlayer)
 else return []
newBolts <- generator (mkShot <$> shoot <*> player)
bolts <- collection newBolts (boltIsAlive worldDimensions <$> monsters)

collection :: (Signal [Signal Bolt])
 -> Signal (Bolt -> Bool)
 -> SignalGen (Signal [Bolt])
collection source isAlive = mdo
 boltSignals <- delay [] (map snd <$> boltsAndSignals')
 -- add new bolt signals
 bolts <- memo (liftA2 (++) source boltSignals)
 let boltsAndSignals = zip <$> (sequence =<< bolts) <*> bolts
 -- filter out dead ones
 boltsAndSignals' <- memo (filter <$> ((.fst) <$> isAlive) <*> boltsAndSignals)
 return $ map fst <$> boltsAndSignals'

physics

execute :: IO a
 -> SignalGen a

effectful :: IO a
 -> SignalGen (Signal a)

Round-up

Cons

Some added complexity in
handling infrastructure

performance?

Pros

Conceptually simpler
(smaller units)

Testability

prop_insideLimits move player@(Player (x,y) _ _) =
 (x > ((-worldWidth) `quot` 2 + playerSize `quot` 2)) &&
 (x < (worldWidth `quot` 2 - playerSize `quot` 2)) &&
 (y > ((-worldHeight) `quot` 2 + playerSize `quot` 2)) &&
 (y < (worldHeight `quot` 2 - playerSize `quot` 2))
 ==>
 not $ (\p -> outsideOfLimits (worldWidth, worldHeight) p
playerSize)
 $ position
 $ movePlayer playerSpeed (worldWidth, worldHeight) move
Nothing (False, False, False, False) Nothing player

