

Fighting Zombies: With Containers
Towards Fault-Tolerant Infrastructure

FELIX HUPFELD, CTO QUOBYTE INC. @DRHU

GOTO BERLIN 2015

Preview

What is fault-tolerance?

Why fault-tolerance?

Fault-tolerance And Containers

Scheduling

State, Zombies, Naming

STONITH - Shoot The Other Node In The Head

© Tim Serong

FAULT

● any hardware error
● most importantly split-brain
● no byzantine

TOLERANCE

● never affect correctness /
safety / consistency

● should not affect availability
● handle automatically

Why fault-tolerance? High availability!

Why fault-tolerance? Operations!

Robustness

guards against operator mistakes

make system simpler to operate

at any scale

Why fault-tolerance? Operations!

Rolling Updates, Zero-downtime updates

Why fault-tolerance? Operations!

Fault isolation. Degrade individual hardware to an
anonymous resource:

failure: page, replace asap

 vs.

 fix eventually

Why fault-tolerance? Operations!

Decouple hardware processes from service processes. No maintenance
window for isolated tasks.

schedule maintenance window / drain

vs

pull out and repair

Scalable Operations. More servers / data, same headcount.
> 20k servers per DC OP at Facebook

Fault-tolerance and Containers

Containers decouple application from host (ship with dependencies).

Containers enable quick deployment of applications on any host - can react to
failures quickly.

Reference Architecture

Container
Container

Container

Container

Host Host Host Host

Scheduler

State

Application

Dependencies

Agent Agent Agent Agent

Co
nt

ai
ne

r

Problem: State

Move state away from container, from host, to remote and redundant storage.

Options:

● NFS: doesn’t scale, high-availability a problem in itself
● Probably want converged:

○ locality, homogeneous infrastructure
○ needs fault-tolerant storage though (Ceph, Quobyte)

● Object storage:
○ if you’ve designed your application accordingly
○ usually write once

State

Application

DependenciesCo
nt

ai
ne

r /var/lib/mysql

MySQL

Ubuntu

Problem: State

Block storage (Ceph, EBS, …):

○ supply remote block device
○ block device only accessible on one host

Host

Container

Host

/dev/xyz/dev/xyz

/mnt/my.../mnt/mycontainer

Container

Problem: State

Host

mysql

/dev/nbd0

/var/lib/mysql /mnt/cont_a_vol

Storage Volume

Host

Problem: State

Host

mysql

/dev/nbd0

/var/lib/mysql /mnt/cont_a_vol

Storage Volume

Host

mysql

/dev/nbd0

/var/lib/mysql /mnt/cont_a_vol

fsck!

Log replay!

File systems (Quobyte, GlusterFS, HDFS, ...)

○ all data everywhere
○ if POSIX: drop-in replacement

Problem: State

Host

/dfs/...

Container

Host

Container

Problem: State

Host

mysql

/var/lib/mysql /quobyte/mysql_
user_db

File System
Volume

Host

Problem: State

Host

mysql

/var/lib/mysql /quobyte/mysql_
user_db

File System
Volume

Host

mysql

/var/lib/mysql /quobyte/mysql_
user_db

Log replay!

Problem: Rescheduling

Cluster Scheduler:
- decide hosts are dead (timeout)
- start container on live host
- needs to be fault-tolerant itself

Host

Container

Host

Container

Scheduler
Scheduler

Scheduler

Problem: Zombies

Scenario:

- failure detection by timeouts
- host detected to be failed
- reschedule
- two instances of same container

access the same files
- potential for corruption

Host (Overload) Host

Container

????

Container

Problem: Zombies

Remedies:

● Kill all local containers if master could not be reached
● Careful aligned timeouts, but not safe
● Mutual exclusion via locking / leases

○ Use lock with timeout / lease to guard access, prevent concurrent access
○ Make application aware: block device management or file locking
○ block device: unmount, mount on other host, guard mount with lock

○ file system: Quobyte can automatically lock all open files transparently (implicit locking
feature)

● Custom: Task instance numbers
○ instance suicide
○ not exploited yet

Problem: Discovery and Naming

Container is available - but where do I find it?

Dynamic discovery as locations change!

● Custom version: use lock server like Zookeeper or etcd
● DNS

○ mesos-dns
○ DNS failover is often slow due to caching

● HTTP
○ http APIs .. use http redirector

● General TCP-based protocols need sort of software-defined networking
○ Giantswarm Ambassador pattern
○ Mesos IP-per-Container

Container Infrastructure @

Container

Host Host Host Host

Mesos
Scheduler

/quobyte /quobyte /quobyte /quobyte

Quobyte Services Quobyte Services Quobyte Services Quobyte Services

Ambassador presence
Mesos

Scheduler
Scheduler

Node Agent Node Agent Node Agent Node Agent

Container

Discovery

Container Infrastructure @ Quobyte

Jenkins

Prometheus

MySQL

Gerrit

Host Host Host Host

Mesos
Scheduler

/quobyte /quobyte /quobyte /quobyte

Quobyte Services Quobyte Services Quobyte Services Quobyte Services

custom http redir

mesos-dns

Mesos
Scheduler

Mesos
Scheduler

OBS

mesos-agent mesos-agent mesos-agent mesos-agent

Conclusion

● Full fault-tolerance desirable for infrastructure of any size
● Containers and external state are a good base
● Many pieces are there:

○ containers
○ schedulers
○ storage systems
○ dynamic naming / SDNs

● and can be put together for fault-tolerance for many use cases

Felix Hupfeld
@drhu

