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| Preview

What is fault-tolerance?

Why fault-tolerance?
Fault-tolerance And Containers

Scheduling

State, Zombies, Naming
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I STONITH - Shoot The Other Node In The Head




FAULT

e any hardware error
e most importantly split-brain
e no byzantine



TOLERANCE

e never affect correctness /
safety / consistency

e should not affect availability

e handle automatically



| Why fault-tolerance? High availability!




I Why fault-tolerance? Operations!

Robustness
guards against operator mistakes

make system simpler to operate

at any scale



I Why fault-tolerance? Operations!

Rolling Updates, Zero-downtime updates



I Why fault-tolerance? Operations!

Fault isolation. Degrade individual hardware to an
anonymous resource:
failure: page, replace asap
VS.

fix eventually




I Why fault-tolerance? Operations!

Decouple hardware processes from service processes. No maintenance
window for isolated tasks.
schedule maintenance window / drain
VS

pull out and repair

Scalable Operations. More servers / data, same headcount.
> 20k servers per DC OP at Facebook



I Fault-tolerance and Containers

Containers decouple application from host (ship with dependencies).

Containers enable quick deployment of applications on any host - can react to
failures quickly.

*docker



I Reference Architecture
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I Problem: State

MySQL
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Dependencies

Move state away from container, from host, to remote and redundant storage.
Options:

e NFS: doesn't scale, high-availability a problem in itself

e Probably want converged:

o locality, homogeneous infrastructure

o needs fault-tolerant storage though (Ceph, Quobyte)
e Object storage:

o if you've designed your application accordingly
o usually write once



I Problem: State

Block storage (Ceph, EBS, ...):

o supply remote block device
o block device only accessible on one host
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I Problem: State

/var/lib/mysql /mnt/cont_a_vol

/dev/nbd0

Host Host

v

Storage Volume




I Problem: State

____________________

mysql Log replay!
t /var/lib/mysql ;4—5 /mnt/cont_a_voli /var/lib/mysql /mnt/cont_a_vol
| /dev/nbdo | | /dev/nbdo fsck!
____________________ —
Host st
Storage Volume




I Problem: State

File systems (Quobyte, GlusterFS, HDFS, ...)

o all data everywhere
o if POSIX: drop-in replacement

Host Host




I Problem: State

/quobyte/mysql_
user_db

/var/lib/mysql

Host Host
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File System
Volume




| Problem: State

| mysql | Log replay!
e e | btejys
+ /var/lib/mysql : ! /quou;/et;:/gwgsq_ : /var/lib/mysql /quou;/ef/zjngsq_
Host Host
File System
Volume




I Problem: Rescheduling

Cluster Scheduler;
decide hosts are dead (timeout)
start container on live host

Scheduler
- needs to be fault-tolerant itself
|
|
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I Problem: Zombies

7777 Scenario:

m - failure detection by timeouts

- host detected to be failed

Host (Overload) Host - reschedule

- two instances of same container
access the same files

- potential for corruption




I Problem: Zombies

Remedies:

e Kill all local containers if master could not be reached
e C(Careful aligned timeouts, but not safe

e Mutual exclusion via locking / leases
o Use lock with timeout / lease to guard access, prevent concurrent access
o Make application aware: block device management or file locking
o block device: unmount, mount on other host, guard mount with lock

o file system: Quobyte can automatically lock all open files transparently (implicit locking
feature)

e Custom: Task instance numbers

o instance suicide
o not exploited yet



| Problem: Discovery and Naming

Container is available - but where do | find it?
Dynamic discovery as locations change!

e (Custom version: use lock server like Zookeeper or etcd
e DNS

o mesos-dns
o DNS failover is often slow due to caching

e HTTP
o http APIs .. use http redirector

e General TCP-based protocols need sort of software-defined networking

o Giantswarm Ambassador pattern
o Mesos IP-per-Container
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Mesos
Scheduler

custom http redir

mesos-dns
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| Container Infrastructure @ Quobyte
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I Conclusion

e Full fault-tolerance desirable for infrastructure of any size
e (Containers and external state are a good base
e Many pieces are there:
o containers
o schedulers
o storage systems
o dynamic naming / SDNs
e and can be put together for fault-tolerance for many use cases
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