O1l0;

confel ence

9

Click ‘engage’
to rate sessions
and ask questions

M Foliow us on Twitter @:GOTOber www.gotober.com

@

Quobyte

Fighting Zombies: With Containers
Towards Fault-Tolerant Infrastructure

FELIX HUPFELD, CTO QUOBYTE INC. @DRHU

GOTO BERLIN 2015

| Preview

What is fault-tolerance?

Why fault-tolerance?
Fault-tolerance And Containers

Scheduling

State, Zombies, Naming

UCS B-Series Servers

UCS 6200 Fabric Interconnects

Mexus 1110 hosting
MNexus 1000w

Mexus 7000 Chassis
Supervisor 2E
10G M2 and F2/F2e Lina Cards

NetApp FAS 22xx
NetApp FAS 32
MNetApp FAS G2xx

106G Convengad
FCoE and P

FCoE

106 1P
1G P

Q@

Quobyte

I STONITH - Shoot The Other Node In The Head

FAULT

e any hardware error
e most importantly split-brain
e no byzantine

TOLERANCE

e never affect correctness /
safety / consistency

e should not affect availability

e handle automatically

| Why fault-tolerance? High availability!

I Why fault-tolerance? Operations!

Robustness
guards against operator mistakes

make system simpler to operate

at any scale

I Why fault-tolerance? Operations!

Rolling Updates, Zero-downtime updates

I Why fault-tolerance? Operations!

Fault isolation. Degrade individual hardware to an
anonymous resource:
failure: page, replace asap
VS.

fix eventually

I Why fault-tolerance? Operations!

Decouple hardware processes from service processes. No maintenance
window for isolated tasks.
schedule maintenance window / drain
VS

pull out and repair

Scalable Operations. More servers / data, same headcount.
> 20k servers per DC OP at Facebook

I Fault-tolerance and Containers

Containers decouple application from host (ship with dependencies).

Containers enable quick deployment of applications on any host - can react to
failures quickly.

*docker

I Reference Architecture

Application

S
[}
.=
(3]
-
c
(=]
(&)

Dependencies

Scheduler \F Container

Agent Agent Agent Agent

Host Host Host Host

I Problem: State

MySQL

S
o
=
©
L d
c
o
(]

Application

Dependencies

Move state away from container, from host, to remote and redundant storage.
Options:

e NFS: doesn't scale, high-availability a problem in itself

e Probably want converged:

o locality, homogeneous infrastructure

o needs fault-tolerant storage though (Ceph, Quobyte)
e Object storage:

o if you've designed your application accordingly
o usually write once

I Problem: State

Block storage (Ceph, EBS, ...):

o supply remote block device
o block device only accessible on one host

—P Container ? po rTworX
/mnt/my...
@ ceph

o

H
Host Host Il_,!lamazon
we

I Problem: State

/var/lib/mysql /mnt/cont_a_vol

/dev/nbd0

Host Host

v

Storage Volume

I Problem: State

mysql Log replay!
t /var/lib/mysql ;4—5 /mnt/cont_a_voli /var/lib/mysql /mnt/cont_a_vol
| /dev/nbdo | | /dev/nbdo fsck!
____________________ —
Host st
Storage Volume

I Problem: State

File systems (Quobyte, GlusterFS, HDFS, ...)

o all data everywhere
o if POSIX: drop-in replacement

Host Host

I Problem: State

/quobyte/mysql_
user_db

/var/lib/mysql

Host Host

v

File System
Volume

| Problem: State

| mysql | Log replay!
e e | btejys
+ /var/lib/mysql : ! /quou;/et;:/gwgsq_ : /var/lib/mysql /quou;/ef/zjngsq_
Host Host
File System
Volume

I Problem: Rescheduling

Cluster Scheduler;
decide hosts are dead (timeout)
start container on live host

Scheduler
- needs to be fault-tolerant itself
|
|
. RA
MESOSPHERE
MESOS
Host Host c’ Nomad
Core OS5

I Problem: Zombies

7777 Scenario:

m - failure detection by timeouts

- host detected to be failed

Host (Overload) Host - reschedule

- two instances of same container
access the same files

- potential for corruption

I Problem: Zombies

Remedies:

e Kill all local containers if master could not be reached
e C(Careful aligned timeouts, but not safe

e Mutual exclusion via locking / leases
o Use lock with timeout / lease to guard access, prevent concurrent access
o Make application aware: block device management or file locking
o block device: unmount, mount on other host, guard mount with lock

o file system: Quobyte can automatically lock all open files transparently (implicit locking
feature)

e Custom: Task instance numbers

o instance suicide
o not exploited yet

| Problem: Discovery and Naming

Container is available - but where do | find it?
Dynamic discovery as locations change!

e (Custom version: use lock server like Zookeeper or etcd
e DNS

o mesos-dns
o DNS failover is often slow due to caching

e HTTP
o http APIs .. use http redirector

e General TCP-based protocols need sort of software-defined networking

o Giantswarm Ambassador pattern
o Mesos IP-per-Container

Scheduler

/quobyte

| Container Infrastructure @ Q‘@’f

Giant Swarm

t

/quobyte

Node Agent

Node Agent

Quobyte Services

Ambassador > presence
Discovery
/quobyte /quobyte
Node Agent Node Agent

Quobyte Services

Host

Quobyte Services

Quobyte Services

Host

Host

Host

Mesos
Scheduler

custom http redir

mesos-dns

/quobyte

/quobyte

| Container Infrastructure @ Quobyte

-

mesos-agent

/quobyte

mesos-agent

Quobyte Services

mesos-agent

Quobyte Services

Host

Quobyte Services

Host

Host

MySQL

/quobyte

mesos-agent

Quobyte Services

Host

I Conclusion

e Full fault-tolerance desirable for infrastructure of any size
e (Containers and external state are a good base
e Many pieces are there:
o containers
o schedulers
o storage systems
o dynamic naming / SDNs
e and can be put together for fault-tolerance for many use cases

@

Quobyte

Felix Hupfeld
@drhu

O1l0;

confel ence

9

et

Remember to
rate session
Thank you!

