
© 2015 – Erlang Solutions Ltd

Thinking in a Highly Concurrent,
Mostly-functional Language

GOTO Berlin

Berlin, December 4th 2015

Francesco Cesarini
Founder & Technical Director

@francescoC
francesco@erlang-solutions.com

Thinking in a Highly Concurrent,
Mostly-functional Language

QCON London, March 12th, 2009

Erlang Training and Consulting Ltd

Francesco Cesarini
francesco@erlang-consulting.com

© 2015 – Erlang Solutions Ltd

counter_loop(Count) ->
 receive

 increment ->
 counter_loop(Count + 1);
 {count, To} ->
 To ! {count, Count},
 counter_loop(Count)

 end.

Erlang

© 2015 – Erlang Solutions Ltd

Tim Bray, Director of Web Technologies – Sun Microsystems

© 2015 – Erlang Solutions Ltd

Tim Bray, Director of Web Technologies – Sun Microsystems

© 2015 – Erlang Solutions Ltd

Syntax

© 2015 – Erlang Solutions Ltd

Concurrency

© 2015 – Erlang Solutions Ltd

Two ways to do concurrency

Mutable State Immutable State

© 2015 – Erlang Solutions Ltd

Two ways to do concurrency

Problem 1 with mutable state:

Your program crashes whilst
executing in the critical section…

© 2015 – Erlang Solutions Ltd

Two ways to do concurrency

Problem 2 with mutable state:

Where do you locate your state…

 Seattle London

© 2015 – Erlang Solutions Ltd

Two ways to do concurrency

Problem 3 with mutable state:

What happens if your network
connectivity fails…

 Seattle London

© 2015 – Erlang Solutions Ltd

Two ways to do concurrency

Problem 1 with mutable state:

Your program crashes whilst
executing in the critical section…

Your state does not get
corrupted.

 Seattle London

© 2015 – Erlang Solutions Ltd

Two ways to do concurrency

Problem 2 with mutable state:

Where do you locate your state…

You do not Locate state,
you copy it.

 London Seattle

© 2015 – Erlang Solutions Ltd

Two ways to do concurrency

Problem 3 with mutable state:

What happens if your network
connectivity fails…

Make sure your business
logic and databases handle
network splits!

Seattle London

© 2015 – Erlang Solutions Ltd

activity(Joe,75,1024)

Erlang Highlights: Concurrency

Creating a new process using spawn

-module(ex3).
-export([activity/3]).

activity(Name,Pos,Size) ->
 …………

Pid = spawn(ex3,activity,[Joe,75,1024])

© 2015 – Erlang Solutions Ltd

Erlang Highlights: Concurrency

Processes communicate by asynchronous
message passing

Pid ! {data,12,13}

receive
 {start} -> ………
 {stop} -> ………
 {data,X,Y} -> ………
end

receive
 {start} -> ………
 {stop} -> ………
 {data,X,Y} -> ………
end

© 2015 – Erlang Solutions Ltd

Products: AXD301 Switch - 1996

A Telephony-Class, scalable (10 –
160 GBps) ATM switch

Designed from scratch in less than
3 years

AXD 301 Success factors:
!  Competent organisation and people
!  Efficient process
!  Excellent technology (e.g. Erlang/OTP)

© 2015 – Erlang Solutions Ltd

Products: AXD301 Switch - 1996

Erlang: ca 1.5 million lines of code
!  Nearly all the complex control logic
!  Operation & Maintenance
!  Web server and runtime HTML/

JavaScript generation

C/C++: ca 500k lines of code
!  Third party software
!  Low-level protocol drivers
!  Device drivers

Java: ca 13k lines of code
!  Operator GUI applets

© 2015 – Erlang Solutions Ltd

Concurrency Modeling

Model for the natural
concurrency in your problem

In the old days, processes were
a critical resource
!  Rationing processes led to complex and

unmanageable code

Nowadays, processes are very
cheap: if you need a process –
create one!

Example: AXD301 process model

1st prototype:
6 processes/call

2 processes/call

1 process/all calls

2 processes/
call transaction

4-5 processes/
call transaction

© 2015 – Erlang Solutions Ltd

1+1 Redundancy – Good ol’ Telecoms

Data path

Control signalling
Device board

Control plane

User plane

Active Standby

Stable-state
replication

~ 35 000 calls
per processor pair

No ongoing sessions
lost at “failover”

© 2015 – Erlang Solutions Ltd

First IM Proxy Prototype - 2000

multiplexing

multiplexing de-multiplexing

de-multiplexing

state/error handling

users

sockets listener

sockets

© 2015 – Erlang Solutions Ltd

First IM Proxy Prototype - 2000

multiplexing

multiplexing de-multiplexing

state/error handling

users

sockets listener

sockets supervisor

simple 1-1

© 2015 – Erlang Solutions Ltd

Products: EjabberD IM Server - 2002

A distributed XMPP server

Started as an Open Source
Project by Alexey Shchepin

Commercially Supported by
Process-One (Paris)
!  40% of the XMPP IM market
!  Used as a transport layer
!  Managed 30,000 users / node

© 2015 – Erlang Solutions Ltd

Products: EjabberD IM Server - 2002

A distributed XMPP server

Started as an Open Source project by Alexey Shchepin

Commercially Supported by Process-One (Paris)
!  40% of the XMPP IM market
!  Used as a transport layer
!  2008, Managed 30,000 users / node

MongooseIM is a fork and rewrite
!  Open Source, supported by Erlang Solutions
!  Used for Messaging and Device Management
!  2014, managed 1 million users / node

© 2015 – Erlang Solutions Ltd

Fully Replicated Cluster – Ejabberd 2002

s2s
muc

c2s

sm

s2s
muc

c2s

sm
s2s

muc

c2s

sm

Fully replicated
Mnesia database

Client must re-connect
if one of its session
handlers dies

Lo
ad

ba

la
nc

er

© 2015 – Erlang Solutions Ltd

MMGS– Messaging Gateway - 2008

© 2015 – Erlang Solutions Ltd

MMGS– Messaging Gateway - 2008

DBMS

POP
IMAP

SMTP

...

Router/FE Router/FE Router/FE Router/FE

POP
IMAP

SMTP

...

POP
IMAP

SMTP

...

tunnel tunnel

HTTP
HTTP

© 2015 – Erlang Solutions Ltd

Erlang Concurrency Under Stress – Pre-SMP
Th

ro
ug

hp
ut

 /
 S

ec
on

d

Simultaneous Requests

100% CPU

Line 1 Balanced Erlang System

Line 2 Erlang System with bottle necks

© 2015 – Erlang Solutions Ltd

Erlang Concurrency Under Stress – Pre-SMP

YAWS Throughput
(KBytes/second)

 Simultaneous Requests

© 2015 – Erlang Solutions Ltd

Erlang Concurrency Under Stress – Post-SMP

© 2015 – Erlang Solutions Ltd

Stress Tests With SMP

I/O Starvation

TCP/IP Congestion

Memory Spikes

Timeout Fine-tuning

OS Limitations

ERTS Configuration Flags

Shut down Audit Logs

© 2015 – Erlang Solutions Ltd

SMP bottlenecks – pre 2008

© 2015 – Erlang Solutions Ltd

SMP bottlenecks – post 2008

Erlang VM

Scheduler #1

Scheduler #2

run queue

Scheduler #2

Scheduler #N

run queue

run queue

migration
logic

migration
logic

© 2015 – Erlang Solutions Ltd

Big Bang Benchmark – post 2008

" 

© 2015 – Erlang Solutions Ltd

Mandelbrot- 2013

" 

© 2015 – Erlang Solutions Ltd

Now for the Bottlenecks

" 

© 2015 – Erlang Solutions Ltd

Now for the Bottlenecks

" 

© 2015 – Erlang Solutions Ltd

Now for the Bottlenecks

© 2015 – Erlang Solutions Ltd

Ahmdal’s Law

●  n - the number of
threads of execution

●  B - the fraction of the
algorithm that is
strictly serial

●  n - Number of parallel
threads

●  T(n) = The time an
algorithm to finish
when being executed on
n thread(s)

© 2015 – Erlang Solutions Ltd

Now for the Bottlenecks
www.concurix.com

© 2015 – Erlang Solutions Ltd

Now for the Bottlenecks

© 2015 – Erlang Solutions Ltd

Different cores doing different things
CPUs, GPUs, FPGA

Parallella Board
Dual core ARM processor + FPGA
1GB RAM + MicroSD Card

16 or 64 core Epiphany co-processor
Gigabit Ethernet
2x USB ports + HDMI port

Heterogeneous multi-core hardware
is here to stay

© 2015 – Erlang Solutions Ltd

Different cores doing different things
CPUs, GPUs, FPGA

Parallella Board
Dual core ARM processor + FPGA
1GB RAM + MicroSD Card

16 or 64 core Epiphany co-processor
Gigabit Ethernet
2x USB ports + HDMI port

Heterogeneous multi-core hardware
is here to stay

© 2015 – Erlang Solutions Ltd

The Fastest Computer in the World!

Tianhe-2
Chinese National University of Defence Technology

●  33.86 petaflops/s (November
2013)

●  16,000 Nodes, each with 2 Ivy
Bridge multicores and 3 Xeon
Phis

●  3,120,000 x86 cores in total

© 2015 – Erlang Solutions Ltd

Riak and other scalable architectures

© 2015 – Erlang Solutions Ltd © 2011 Erlang Solutions Ltd

N/R/W Values

© 2015 – Erlang Solutions Ltd © 2011 Erlang Solutions Ltd

N/R/W Values

© 2015 – Erlang Solutions Ltd

Clusters and SD Erlang

© 2015 – Erlang Solutions Ltd

“To scale the radical concurrency-oriented
programming paradigm to build reliable
general-purpose software, such as server-
based systems, on massively parallel
machines (10^5 cores).”

!

Release Statement of Aims

© 2015 – Erlang Solutions Ltd

“Limitations exist on all levels. You would not
want an Erlang VM to run with 10^5
schedulers.”

!

Release

© 2015 – Erlang Solutions Ltd

Release

Push the responsibility for scalability from the programmer to
the VM

Analyze performance and scalability

Identify bottlenecks and prioritize changes and extensions

Tackle well-known scalability issues

Ets tables (shared global data structure)

Message passing, copying and frequently communicating
processes

© 2015 – Erlang Solutions Ltd

© 2015 – Erlang Solutions Ltd

Discount Code: authd
50% off the Early Release
40% off the printed copy

© 2015 – Erlang Solutions Ltd

