
Matthias Lübken

Container Patterns

plus give feedback

GiantSwarm.io
Simple Microservice
Infrastructure build for
developers.

Deploy your containers
in seconds.

Scaling with your needs:
Public, Private, On-Prem

https://giantswarm.io/

 Docker is an open-source project
to easily create lightweight,
portable, self-sufficient containers
from any application.”

“

nginx
Proxy

Rails
Frontend

A Go
Backend

A Node
Backend

An Application

 Use multiple containers to
modularize your application.”“

Some reasons

● Independently releasable
● Separate processing types
● Different loads
● Different teams
● Reuse of containers
● Crash isolation
● Different release cycles
● Use different languages / versions / libraries

Container Patterns?

● Are there general applicable patterns?
● How would we describe them?
● What are concrete examples and best-practices

● Context:
○ Cloud cluster applications
○ They should be container runtime agnostic

Related work

● 12-Factor apps
● Cloud-native application architectures
● Microservices
● Continuous Delivery

Outline

Building blocks
● Modular container
● Pods

Composite patterns
● Sidecar
● Ambassador
● Adapter
● Chains

Modular container

nginx
Proxy

Rails
Frontend

A Go
Backend

A Node
Backend

An Application

Modular Container
We define a modular container as the collection of
these 6 properties:

1. Proper Linux process
2. Explicit interfaces
3. Disposable

4. Immutable
5. Self-contained
6. Small

1. Proper Linux Process

Containers should behave as a proper Linux process
and be nice to their init process.
● React to signals
● Return proper exit codes
● Use standard streams

Best practices (Proper Linux Process)
● React to signals:

○ React on e.g. SIGINT, SIGTERM, etc.
○ Don’t daemonize your processes
○ Make your process foreground (e.g. use exec)

● Return proper exit codes:

○ 0 (OK), 1 (General error) …

● Use stdin, stdout, stderr:
○ Log to stdout. Don’t concern with routing and storage

2. Explicit interfaces

Dependencies to other containers should be made explicit
by defining its interfaces.
● CLI arguments
● Environment variables
● Network / Port
● Document via labels

Best practices (Explicit interfaces)
● CLI arguments

○ Use a lib for parsing / validating
● Environment variables

○ Set defaults in the image
○ Overwrite with `docker -e`

● Network / Ports
○ Expose port via EXPOSE in Dockerfile

● Document via labels
○ E.g. LABEL INSTALL="docker run ...

3. Disposable Containers

Containers should be treated as disposable artefacts. The
application shouldn’t rely on a particular container instance
to be running.

Pets vs. Cattle:
Treat your container as part of a cattle. You number them
and when get sick you shoot them.

Best practices (Disposable Containers)

● Only keep ephemeral state
○ Don’t assume this state between two requests

● Robust against sudden death
○ If the container gets interrupted pass on your current job.

● Minimal setup
○ If more setup needed let the scheduler know

4. Immutable

Once a container image is build it shouldn’t be changed.
State should be extracted and changes to the container
should be applied by rebuilding.

Best practices (Immutable)

● Strive for dev / prod parity
● Extract runtime state in volumes
● Anti-pattern: docker exec

5. Self-contained
The container should only rely on the Linux kernel. All other
dependencies should be made explicit and added
dynamically.

Best practices (Self-contained)

● Add dependencies at build time
○ Build Uber-Jar and include webserver

● Strive for zero-config deployment
● Generate dynamic config files on the fly
● Anti-Patterns:

○ Put config into a volume
○ Put code into a volume *

6. Small
A container should have the least amount of code possible
to fulfill its job.

Best practices (Small)

● Build from scratch
● Use small base-image

○ busybox, alpine
● Reuse custom base image
● Anti-Pattern: VM Container

Recap: Modular Container
We define a modular container as the collection of
these 6 properties:

1. Proper Linux process
2. Explicit interfaces
3. Disposable

4. Immutable
5. Self-contained
6. Small

nginx
Proxy

Rails
Frontend

A Go
Backend

A Node
Backend

nginx
Proxy

Rails
Frontend

A Go
Backend

A Node
Backend

Redis
Cache

Logging
Adapter

Reverse
Proxy

Pods
● Group closely related containers
● A single deployable unit
● Share all available namespaces
● The pod as a whole and the individual containers

can be limited

Share namespace
● Sharing the same network namespace and access to the same IP

and port namespace
● Sharing the IPC namespace for communicating e.g. Unix sockets,

shared memory, system message queues
● Share the same hostname via the UTS namespace
● Share the PID namespace and can see each others processes

(not supported by docker)
● Sharing the same volumes

Outline

Building blocks
● Modular container
● Pods

Composite patterns
● Sidecar
● Ambassador
● Adapter
● Chains

http://blog.kubernetes.io/2015/06/the-
distributed-system-toolkit-patterns.html

A Node
Backend

Redis
Cache

Logging
Adapter

Reverse
Proxy

Pattern: Sidecar / Sidekick
● Enhance & extend the main container.
● K8S: transparently. Netflix: platform features.

UDSA Node
Backend

MAIN CONTAINER

Redis
Cache

SIDECAR

Pod

A Node
Backend

Redis
Cache

Logging
Adapter

Reverse
Proxy

Pattern: Adapter
Standardise and normalize output. E.g. logging and
metrics.

localhost or

A Node
Backend

MAIN CONTAINER

Logging
Adapter

ADAPTER

Pod

A Node
Backend

Redis
Cache

Logging
Adapter

Reverse
Proxy

Proxy a local connection to the world: Service Discovery,
Client Side LB, Circuit Breaker

A Node
Backend

MAIN CONTAINER

Service
Discovery

AMBASSADOR

Pattern: Ambassador

localhost

(Pod)

More info:
● https://docs.giantswarm.io/fundamentals/user-services/container-injection/
● https://docs.giantswarm.io/fundamentals/user-services/service-discovery/

https://docs.giantswarm.io/fundamentals/user-services/container-injection/
https://docs.giantswarm.io/fundamentals/user-services/container-injection/
https://docs.giantswarm.io/fundamentals/user-services/service-discovery/
https://docs.giantswarm.io/fundamentals/user-services/service-discovery/

Pattern: Container chains
Defined order of starting and stopping sidecar container.

A Node
Backend

MAIN CONTAINER

Storage
Config

SIDECAR

Discovery

SIDECAR

Network
Config

SIDECAR

(Pod)

Recap

Building blocks
● Modular container
● Pods

Composite patterns
● Sidecar
● Ambassador
● Adapter
● Chains

GiantSwarm.io bit.ly/container-patterns

@luebken

https://giantswarm.io/

Links / References
● http://blog.james-carr.org/2013/09/04/parameterized-docker-containers/
● https://docs.docker.com/articles/dockerfile_best-practices/
● http://tldp.org/LDP/abs/html/exitcodes.html (Exit Codes for “Proper Linux Process”)
● http://www.theregister.co.uk/2013/03/18/servers_pets_or_cattle_cern/ (Pets vs Cattle)
● http://www.projectatomic.io/docs/docker-image-author-guidance/ (Dockerfile)
● http://www.hokstad.com/docker/patterns (Dev patterns)
● http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html (Composite

Patterns)
● http://static.googleusercontent.com/media/research.google.com/de//pubs/archive/43438.pdf

(Borg by Google inspiration for Kubernetes / Pods)
● http://techblog.netflix.com/2014/11/prana-sidecar-for-your-netflix-paas.html (Sidecar Netflix)

http://blog.james-carr.org/2013/09/04/parameterized-docker-containers/
http://blog.james-carr.org/2013/09/04/parameterized-docker-containers/
https://docs.docker.com/articles/dockerfile_best-practices/
https://docs.docker.com/articles/dockerfile_best-practices/
http://tldp.org/LDP/abs/html/exitcodes.html
http://tldp.org/LDP/abs/html/exitcodes.html
http://www.theregister.co.uk/2013/03/18/servers_pets_or_cattle_cern/
http://www.theregister.co.uk/2013/03/18/servers_pets_or_cattle_cern/
http://www.projectatomic.io/docs/docker-image-author-guidance/
http://www.projectatomic.io/docs/docker-image-author-guidance/
http://www.hokstad.com/docker/patterns
http://www.hokstad.com/docker/patterns
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://static.googleusercontent.com/media/research.google.com/de//pubs/archive/43438.pdf
http://techblog.netflix.com/2014/11/prana-sidecar-for-your-netflix-paas.html
http://techblog.netflix.com/2014/11/prana-sidecar-for-your-netflix-paas.html

Credits
● https://www.flickr.com/photos/skynoir/8241460998 (Cover image)
● https://www.flickr.com/photos/tinker-tailor/8378048032/ (Help us image)

https://www.flickr.com/photos/skynoir/8241460998
https://www.flickr.com/photos/skynoir/8241460998
https://www.flickr.com/photos/tinker-tailor/8378048032/
https://www.flickr.com/photos/tinker-tailor/8378048032/

old slides

A Node
Backend

CONTAINER

+ Redis
Cache

Fat Container

A Node
Backend

CONTAINER

+ Service
Discovery

Fat Container

A Node
Backend

CONTAINER

+ Logging
Adapter

Fat Container

Linked Containers

Docker
LinkA Node

Backend

CONTAINER

Redis
Cache

CONTAINER

A Node
Backend

MAIN CONTAINER

Service
Discovery

AMBASSADOR

Linked Container

Docker
Link

Shared volume

Host volume

A Node
Backend

MAIN CONTAINER

Logging
Adapter

ADAPTER

NodeJS Example

https://github.com/giantswarm/giantswarm-firstapp-nodejs/blob/master/server.js

server.listen(httpPort, httpAddress);

process.on('SIGTERM', function() {
 console.log("Received SIGTERM. Exiting.");
 server.close(function () {
 process.exit(0);
 });
});

https://github.com/giantswarm/giantswarm-firstapp-nodejs/blob/master/server.js
https://github.com/giantswarm/giantswarm-firstapp-nodejs/blob/master/server.js

Pods Examples

● Redis cache via unix socket
● Monitoring adapters
● Cache init via named pipe

Best practices (2) (Explicit
dependencies)
● Volumes

○

Container Runtime (Explicit contracts)

● Start containers with --icc==false && --link:other-
container

