

Mobile at scale
GOTO Berlin - December 2015

Mattias Björnheden - Mobile chapter lead

@amnbletochange

Spotify

Founded 2006

75M+ Users

2+ Billion user playlists

58 Countries

1500+ employees

‣ Majority of our users
‣ Offline capable
‣ 30+ developers on

each platform
‣ 1000+ changes in

each release

Spotify Mobile apps

Building a
small app

One team

“The mobile team”

Linear development

The team has capacity
for one or two features
at a time.

Release when ready.

Release

Build feature
A

Build feature
B

Release

Tweak
feature A

Just need to get feature x out and all will be great...

Constant pressure

Shifting priorities

“We know x is almost done but right now we really need to work on Y”

What about quality?

‣ Unknown, varying
quality

‣ Manual tests
‣ Unpredictable

releases
‣ A lot of abandoned

work in progress

We used to be here

Half a year of work

‣ Agile
‣ Clear prioritization
‣ Continuous

integration
‣ Feature flags
‣ Focus on testing and

test automation

There are solutions

and also started thinking about....

We implemented some
of these

Building a
big app

Multiple teams

How do we organize them?

Parallel development

Teams have capacity
for multiple features.

Synchronization.

Division of work

Tweak
feature A

Build
feature B

Prototype
feature C

iOS
release

Android
release

Prepare
for

feature D

Tweak
feature A

Tweak
feature B

Build
feature C

Prototype
feature E

With multiple teams and division of work they start to depend on and
block each other

Dependencies

System design

“Organizations which design systems are constrained to produce
designs which are copies of the communication structures of these

organizations” - Conway’s law

What about quality?

‣ Duplication of work
‣ Regression
‣ Teams blocking on

each other
‣ Bloat
‣ Navigation items

named after our
teams

We have spent some time here

There are solutions

Building
the Spotify
app

What it is

Shared core library
(C++)

Design components

Feature rollout and
A/B test framework Feature

Feature
Feature

Feature
Features e.g Playlist Hundreds of

microservices

Dynamic view
frameworks for e.g.
Browse

Built by autonomous
feature teams

Aligned through design, product and quality guidelines

P P P P

Squad Squad Squad Squad

iOS devs

Android devs

‣ Solves a lot of synchronization
‣ Fast - teams seldom block on each other
‣ Feature parity across platforms
‣ Autonomy -> happy developers

Successes

‣ Hard to execute on big projects
‣ Suboptimization
‣ Inconsistent design
‣ One squad -> one view -> one navigation item
‣ Rewrite surprise
‣ Duplication

Failures we have learned from

Alignment

On priorities

On design

On quality

For a year we spent about a third of our mobile
capacity building continuous integration tools and
infrastructure.

We (aim to) ship every two weeks with strict quality
rules. If a feature is not release ready it is disabled.

Through strict release rules

We fail, we discuss, we decide on new rules to
follow.

It is not strong managers who come up with and
enforce rules. It is strong squads and guilds who
agree on best practices.

Rules are not top down

‣ We believe autonomy and simplicity is more
important than trying to synchronize all efforts.

‣ We treat duplication similar to optimization. Fix
it when we need to.

‣ It is often easier merge two or three working
solutions into a great one than trying to build a
generic one from the start.

We accept some duplication

In practice

Feature example

Playlist filter and sorting

Assume we did not have this
feature, what would
implementation look like from start
to finish.

“Help users find things in big playlists”

Mission

‣ Where does filter logic go?

○ UI layer, C++ layer,
backend

‣ What is the user
experience?

○ Input from product &
design

‣ How do we test?
○ AB versions
○ Lead platform

‣ Who will implement?
‣ Who do we depend on?

Squad planning meeting

The squad should
have the people
and skills to own
all these points.

‣ Agile process -
specifics decided by
squad with help from
agile coach.

‣ Sync through stand
ups and daily
collaboration.

‣ Designer and
product owner
heavily involved.

Implementation

‣ Start by creating
flags for AB-testing
and rollout.

‣ Build feature behind
flags.

‣ Continuous
integration.

Development

‣ All code is reviewed
‣ Unit tests for all code, run pre-merge
‣ Automated tests run pre- and post merge.
‣ Manual QA in squad for all steps.
‣ Employee testing before rollout
‣ Gradual rollout (both clients and features)
‣ Feature and client metrics monitored constantly

Quality

‣ Client release branches cut every 2 weeks.
‣ Release branches stabilizing 0-10 days.
‣ Incremental rollout starts as soon as there are

no blockers on release branch.
‣ Nightly builds from master to employees.

Deployment

TLDR

