goto;

(.onference

Click ‘engage’
to rate sessions
and ask questions

3 FFollow us on Twitter @GOTOber www.gotober.com

Nils Magnus, LinuxTag Association

Docker Security:

Who can we trust, what should we verify?

where .com meets .org
TAG Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY

3

| pe— O e
==

B e

where .com meets .org
Open Source events since 1996

>
=
o
>
O
Ll
w
o
Ll
hV4
O
o
(am]

NILS MAGNUS:

where .com meets .org
1996

NILS MAGNUS: DOCKER SECURITY 4

[loBepan, HO NpoBepsAn

(,doveryai, no proveryai“)

,, LFUST,
but verify“

where .com meets .org
TAG Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY

,,Is Docker secure?“

The term ,,secure” depends on your security objectives
To use Docker is most often more secure compared to not using Docker
What do you plan to protect your software from?

— Most of the time: Isolation (to the host and other containers)

,,Protect against mistake, not abuse!”
- from the DocRer, Inc. documentation

,containers do not contain!“
- Dal’l WaISh, Red Hat where .com meets .org

Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY

Shared Ressources

Attack scenario

Security Controls

Complexity of
Mitigation

Isolation on Several Levels

Physical Host
Share a network

Attack hosts and ports

Portfilter, firewalls,
segmention of
networks

Easy, best Practices

Virtual Maschine
Share host hardware

Attack hypervisor

Good hypervisor

Complex, but possible
to manage from a
centralalized point

5
TAG

NILS MAGNUS: DOCKER SECURITY

Container
Share linux kernel

Attack kernel
isolation via syscall

(namespaces,
cgroups, ...)
Inside

containermanager,
SE-Linux, capabilities

Tricky in detail due
to large attack
surface

where .com meets .org
Open Source events since 1996

Four Threat Types

B Tech Attacks m Architecture

B Sources m User

where .com meets .org
TAG Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY

where .com meets .org
Open Source events since 1996

NILS MAGNUS DOCKER SECURITY 9

Capabilities

m Withdrawing of capabilitys prevents restoration of status quo
ante (even with root permissions):

getpcaps $$

Capabilities for "22424': =

cap_chown, cap_dac_override, cap_dac_read_search,cap_fowner,cap_fsetid, cap_kill, cap_set
gid, cap_setuid, cap_setpcap,cap_linux_immutable,cap_net_bind_service,cap_net_broadcast
,cap_net_admin, cap_net_raw, cap_ipc_lock, cap_ipc_owner, cap_sys_module, cap_sys_rawio,ca
p_sys_chroot, cap_sys_ptrace, cap_sys_pacct, cap_sys_admin,cap_sys_boot, cap_sys_nice,cap
_Sys_resource,cap_sys_time,cap_sys_tty_config,cap_mknod, cap_lease,cap_audit_write,cap
_audit_control, cap_setfcap, cap_mac_override, cap_mac_admin, cap_syslog, cap_wake_alarm,c
ap_block_suspend+ep

docker run -it ubuntu /bin/bash

root@39ed301e0731:/# getpcaps 3

Capabilities for "1': =

cap_chown, cap_dac_override, cap_fowner,cap_fsetid,cap_kill, cap_setgid, cap_setuid,cap_s

etpcap, cap_net_bind_service, cap_net_raw, cap_sys_chroot, EUIEIH
cap_mknod, cap_audit_write,cap_setfcap+eip - where .com meets .org
TAG Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY

Issues with Capabilities

Large number of usecases
Only less than 4o capabilities are defined
Semantics not very well defined

Example: ,,CAP_SYS_PACCT” has 30+ use cases, ranging from ,,random

device management” to ,turning DMA on/off in xd driver”

NILS MAGNUS: DOCKER SECURITY

5
TAG

where .com meets .org
Open Source events since 1996

Syscalls

System call API to the kernel is rapidly growing:
Linux/arch/arm/include/asm/unistd.h:
22 #define __NR_syscalls (392)

Each call is a potential attack vector into the kernel and thus to the
host

Within the kernel a single, tiny bug exploits the whole isolation

where .com meets .org
TAG Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY

Issues with Syscalls

Sebastian Kramer from the Openwall project released in June 2014 a proof-
of-concept (,,Shocker”), enabling him to escape Docker 0.11 (pre-
predecessor of version 1.0)

Docker creates a new filesystem context and bindmounts new ,/“.

Container and host share within the kernel the the same struct fs in order
to maintain bindmounts.

Do you know syscall open_by_handle_at()? To use it, you need
CAP_DAC_OVERRIDE, which Docker had at that time.

The resulting ressources allowed you to traverse the inodes of the host.
That enabled you to read /etc/shadow, for example.
LY ot sonce ovente o o

NILS MAGNUS: DOCKER SECURITY

Namespaces

Virtulize/isolate important system ressources like

PIDs,

network interfaces,
UIDs,

hostnames and more

Old way: Access global variable within the kernel for a ressource

New way (namespace enabled): Ask a nsproxy for the ressource as

which is inside your current namespace

All access paths inside the kernel need to be scrutinized

NILS MAGNUS: DOCKER SECURITY

5
TAG

where .com meets .org
Open Source events since 1996

Namespace example

m hostname” command — syscall uname(2) — kernel space

m kernel/sys.c:
1141 SYSCALL_DEFINE1(newuname, str
1146 if (copy_to_user(name

ew_utsname __user *, name)

sizeof *name))
m include/linux/utsname.h:
72 static inline struct new_utsname/futsname(void)

74 return &CUI’I’CI’I'[-H’]SDI’O
m cat /proc/version“ commangd/— open() — kernel space — procfs

->Uts_ns->name;

m proc/version.c:

8 static int version_prg€_show(struct seq_file *m, void *v)

linux_proc_banner,
sysname, |.. um where .com meets .org
y [] Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY

10 seq_printf
11

Bind- and other mounts

root@5a5ec53ca213:/# mount

none on / type aufs (rw,relatime, si=39574450792819a9, dio,dirperml)

proc on /proc type proc (rw,nosuid, nodev,noexec,relatime)

tmpfs on /dev type tmpfs (rw,nosuid, mode=755)

devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime, gid=5,mode=620, ptmxmode=666)
sysfs on /sys type sysfs (ro,nosuid, nodev, noexec,relatime)

tmpfs on /sys/fs/cgroup type tmpfs (ro,nosuid, nodev, noexec,relatime, mode=755)

cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
systemd on /sys/fs/cgroup/systemd type cgroup (ro,nosuid,nodev,noexec,relatime, name=systemd)
/dev/disk/by-uuid/79bd203c-aea7-4564-b00d-7ac555e31168 on /etc/resolv.conf type ext4 (rw,relatime,errors=remount-ro,data=ordered)
/dev/disk/by-uuid/79bd203c-aea7-4564-b00d-7ac555e31168 on /etc/hostname type ext4 (rw,relatime,errors=remount-ro,data=ordered)
/dev/disk/by-uuid/79bd203c-aea7-4564-b00d-7ac555e31168 on /etc/hosts type ext4 (rw,relatime,errors=remount-ro,data=ordered)

shm on /dev/shm type tmpfs (rw,nosuid,nodev,noexec,relatime, size=65536k)

mgueue on /dev/mgqueue type mqueue (rw,nosuid,nodev,noexec,relatime)

devpts on /dev/console type devpts (rw,nosuid, noexec,relatime,gid=5,mode=620, ptmxmode=000)

/proc/asound type proc (ro,nosuid, nodev, noexec,relatime)

/proc/bus type proc (ro,nosuid,nodev,noexec,relatime)

/proc/fs type proc (ro,nosuid,nodev,noexec,relatime)

/proc/irq type proc (ro,nosuid, nodev, noexec,relatime)

/proc/sys type proc (ro,nosuid,nodev,noexec,relatime)

/proc/sysrq-trigger type proc (ro,nosuid, nodev, noexec,relatime)

tmpfs on /proc/kcore type tmpfs (rw,nosuid,mode=755)

tmpfs on /proc/timer_stats type tmpfs (rw,nosuid,mode=755)

proc
proc
proc
proc
proc
proc

on
on
on
on
on
on

on
on
on
on
on
on
on
on
on
on
on

/sys/fs/cgroup/cpuset type cgroup (ro,nosuid,nodev, noexec,relatime,cpuset)
/sys/fs/cgroup/cpu type cgroup (ro,nosuid,nodev, noexec,relatime, cpu)
/sys/fs/cgroup/cpuacct type cgroup (ro,nosuid, nodev, noexec,relatime,cpuacct)
/sys/fs/cgroup/memory type cgroup (ro,nosuid, nodev, noexec,relatime, memory)
/sys/fs/cgroup/devices type cgroup (ro,nosuid, nodev, noexec,relatime,devices)
/sys/fs/cgroup/freezer type cgroup (ro,nosuid, nodev,noexec,relatime,freezer)
/sys/fs/cgroup/net_cls type cgroup (ro,nosuid,nodev,noexec,relatime,net_cls)
/sys/fs/cgroup/blkio type cgroup (ro,nosuid,nodev,noexec,relatime,blkio)
/sys/fs/cgroup/perf_event type cgroup (ro,nosuid,nodev,noexec,relatime, perf_event)
/sys/fs/cgroup/net_prio type cgroup (ro,nosuid, nodev, noexec,relatime,net_prio)
/sys/fs/cgroup/hugetlb type cgroup (ro,nosuid, nodev, noexec,relatime, hugetlb)

Em where .com meets .org

TAG Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY

Cgroups

Have only limited effect to isolation needs

Restrict consumption of several ressources

m RAM
m CPU

m /0

m Network bandwidth

Can be useful if DoS scenarios are feasible

Evaluate if ressource allocation interferes with overall system

architecture
TAG [oot

NILS MAGNUS: DOCKER SECURITY

Threat 2:
Insufficient Architecture

Daemon
Docker manages all container operations by means of a permanant
daemon with a REST-API.
Uses Unix domain socket per default, runs as root user.

Opton -H binds daemon to a TCP port. Necessary for orchestration.
Access control is important (both authorization and authentication).

If not protected by SSL/TLS, exposing this port is dangerous.

New project Rocket (rkt) addresses these issues,
but is still in an early stage work in progress.

where .com meets .org
TAG Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY

Application Architecture

m Single containers are fun, but effectively neat toys
m Mature applications have resilience objectives:

Scale out (being able to deal with any number of containers)

High availibility (failover if single containers die)

Load balancing (distribute workloads to idle containers)

Statelessness (so you can replace and upgrade any part of the application)

Separation of duties
m Application design, orchestration, and integration into a CI/CD

pipeline are serious tasks by themselves
LINUX|
Openh;uerc.eczventsiﬁltcse.ggi

NILS MAGNUS: DOCKER SECURITY

Security Architecture

m Defense in Depth:
Never rely on a single measure to protect your application and data

m Container implement isolation
m Firewalls provide additional network access
®m Encryptions protects data

m Single applications in a single container
m No need to SSH into containers in production (pet vs. cattle)

where .com meets .org
TAG Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY

Network Security

m Per default, all containers share a common bridge.

m All container are thus part of the same segment/subnet: there is no special
separation on the network layer between single containers.

m A host firewall is not sufficient to prevent from neighbor attacks:

Cont.2 Cont. 3 Cont. 4

m Communication of cluster management (etcd, k8s etc.) where com meets org
needs to be authentic and confidential (no default) LY open source events since 1996
NILS MAGNUS: DOCKER SECURITY

where .com meets .org
' TAG Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY 23

Images

Images are a convenient feature of Docker

Malware shipped in containers

m Necessity to check content

m Experimental feature: signed images (since 1.3). Rkt has this built in

Malware shipped in packages

®m Patchmanagement remains important
m Update path for active containers (pet vs. Cattle)

Run your own Repository? Don't store credentials!

NILS MAGNUS: DOCKER SECURITY

5
TAG

where .com meets .org
Open Source events since 1996

Cl pipeline

m Build your own images (really easy with Dockerfiles)
m Version control for Dockerfiles
m Integrate build into Cl pipeline
B Run your own image registry
H

Never have credentials inside your containers

m Validate sources for conatiners and packages

where .com meets .org
TAG Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY

=

where .com meets .org
Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY 26

What could possibly go wrong?

sudo docker run --privileged=true -it ubuntu

m Containers are not ,,small desktops”

m Don't try to enable every feature that exists in a legacy distro

® Bind mounts can be nasty — use a data storage or object store

m There's no need to access raw hardware features inside containers

where .com meets .org
TAG Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY

Four essential facts and tipps about container security:

(1) A lot of security measures for isolation are built-in,
more are to come.

21 where .com meets .org
TAG Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY 28

P

SSus
‘ 2
Credits: k- 4
Thanks for great foe age ung

free and open licenses. | -.4--(, MorguefFi
v "!’" e 3
" Federal archive ’_.’.‘""’u- aiy, Executive Office of the

1 i © . [11TE 7 i | : ; - e
Eirl;ers;rtent of th ni tes, arlgﬁTp_ronto.Publlc - e where com meets og
R | TAG ' '

Open Source events since 1996

NILS MAGNUS: DOCKER SECURITY 29

O1l0,;

(.onference

9

Pers?

Remember to

rate session
Thank you!

3 FFollow us on Twitter @GOTOber www.gotober.com

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30

