
DDD & REST
Domain-Driven APIs for the web

!/" olivergierke
Oliver Gierke



2



Background

3



4

Spring Data 

Repositories & 
Aggregates

Spring HATEOAS 

Hypermedia 
for Spring MVC

Spring Data REST



REST ≠  
CRUD via HTTP

5



What does it take to 
bridge the worlds of 
DDD & REST?
“



7



7



Value objects

8



Value Objects are a  
PITA to build in 

some languages.

9



Still, they’re worth it.

10

See „Power Use of Value Objects in DDD“ by Dan Bergh Johnsson.

http://www.infoq.com/presentations/Value-Objects-Dan-Bergh-Johnsson


Lombok — putting the 
spice back into Java.

11



Key opponents: 

Mapping libraries  
that need to 

(de)serialize them.

12



Entities & 
Repositories

13



14



14

Customer
Payment Address

Email



14

Invoice

Customer
Payment Address

Email



14

Order

LineItem

Invoice

Customer
Payment Address

Email



14

Order

LineItem

Product

Invoice

Customer
Payment Address

Email



14

Order

LineItem

Product

Invoice

Customer
Payment Address

Email



Entity + 
Repository =  

Aggregate

15



Aggregates form nice 
representation 

boundaries.

16



Aggregates become 
the key things 

to refer to.

17



Don’t get trapped by 
datastore thinking.

18



Try to avoid  
bi-directional 
relationships.

19



Domain Events

20



21

Level 0: No events at all



21

Level 0: No events at all

Level 1: Explicit operations



If you’re calling two 
setters in a row, you’re 

missing a concept.

22



23

Level 0: No events at all

Level 1: Explicit operations

Level 2: Some operations as events



Domain events as 
state transitions.

24



Expose important 
events to interested 

parties via feeds.

25



26

Level 0: No events at all

Level 1: Explicit operations

Level 2: Some operations as events

Level 3: Event Sourcing



REST

27



Representation 
design matters

28



Aggregates 
Identifiable 
Referable 

Scope of consistency

29



Resources 
Identifiable 
Referable 

Scope of consistency

30



Hypermedia

31



Serving data and 
navigation information  

at the same time.

32



Trading domain 
knowledge with protocol 

complexity in clients. 

33



Reducing decisions in 
clients to whether a  

link is present or not.

34



Prefer explicit  
state transitions over 

poking at your resources 
using PATCH.

35



Translate domain 
concepts into web-
appropriate ones.

36



37

Aggregate Root / 
Repository

Collection / Item 
Resources

IDs URIs

@Version ETags

Last Modified 
Property

Last Modified 
Header

Relations Links



RESTBucks



RESTBuckspayment 
expected

preparing

cancelled

ready completed

1

2

3

4

5 6



Method URI Action Step

POST /orders Create new order 1

POST/PATCH /orders/{id} Update the order 
(only if "payment expected")

2

DELETE /orders/{id} Cancel order 
(only if "payment expected")

3

PUT /orders/{id}/payment Pay order 
(only if "payment expected")

4

Barista preparing the order

GET /orders/{id} Poll order state 5

GET /orders/{id}/receipt Access receipt

DELETE /orders/{id}/receipt Conclude the order process 6



Method Resource type Action Step

POST orders Create new order 1

POST/PATCH update Update the order 2

DELETE cancel Cancel order 3

PUT payment Pay order 4

Barista preparing the order

GET order Poll order state 5

GET receipt Access receipt

DELETE receipt Conclude the order process 6



Spring 
RESTBucks

41



Web

Service

Repository

-

Orders

Spring Data

Spring Data 
REST

Payment

Spring Data

Manual 
implementation

Manual 
implementation



JacksonCustomizations 

Externalize tweaks to the 
general JSON design

43



Spring Data REST 
for the CRUDdy parts.

44



ResourceProcessor 

To conditionally sneak 
links into the default 

representation.

45



Code

46

Spring RESTBucks - https://github.com/olivergierke/spring-restbucks



Questions?

47


