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Background
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Spring Data 

Repositories & 
Aggregates

Spring HATEOAS 

Hypermedia 
for Spring MVC

Spring Data REST



REST ≠  
CRUD via HTTP
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What does it take to 
bridge the worlds of 
DDD & REST?
“
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Value objects
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Value Objects are a  
PITA to build in 

some languages.
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Still, they’re worth it.
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See „Power Use of Value Objects in DDD“ by Dan Bergh Johnsson.

http://www.infoq.com/presentations/Value-Objects-Dan-Bergh-Johnsson


Lombok — putting the 
spice back into Java.
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Key opponents: 

Mapping libraries  
that need to 

(de)serialize them.
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Entities & 
Repositories
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Entity + 
Repository =  

Aggregate
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Aggregates form nice 
representation 

boundaries.
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Aggregates become 
the key things 

to refer to.
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Don’t get trapped by 
datastore thinking.
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Try to avoid  
bi-directional 
relationships.
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Domain Events

20



21

Level 0: No events at all
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Level 0: No events at all

Level 1: Explicit operations



If you’re calling two 
setters in a row, you’re 

missing a concept.
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Level 0: No events at all

Level 1: Explicit operations

Level 2: Some operations as events



Domain events as 
state transitions.
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Expose important 
events to interested 

parties via feeds.
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Level 0: No events at all

Level 1: Explicit operations

Level 2: Some operations as events

Level 3: Event Sourcing



REST
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Representation 
design matters
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Aggregates 
Identifiable 
Referable 

Scope of consistency
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Resources 
Identifiable 
Referable 

Scope of consistency
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Hypermedia
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Serving data and 
navigation information  

at the same time.
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Trading domain 
knowledge with protocol 

complexity in clients. 
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Reducing decisions in 
clients to whether a  

link is present or not.
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Prefer explicit  
state transitions over 

poking at your resources 
using PATCH.
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Translate domain 
concepts into web-
appropriate ones.
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Aggregate Root / 
Repository

Collection / Item 
Resources

IDs URIs

@Version ETags

Last Modified 
Property

Last Modified 
Header

Relations Links



RESTBucks



RESTBuckspayment 
expected

preparing

cancelled

ready completed

1

2

3

4

5 6



Method URI Action Step

POST /orders Create new order 1

POST/PATCH /orders/{id} Update the order 
(only if "payment expected")

2

DELETE /orders/{id} Cancel order 
(only if "payment expected")

3

PUT /orders/{id}/payment Pay order 
(only if "payment expected")

4

Barista preparing the order

GET /orders/{id} Poll order state 5

GET /orders/{id}/receipt Access receipt

DELETE /orders/{id}/receipt Conclude the order process 6



Method Resource type Action Step

POST orders Create new order 1

POST/PATCH update Update the order 2

DELETE cancel Cancel order 3

PUT payment Pay order 4

Barista preparing the order

GET order Poll order state 5

GET receipt Access receipt

DELETE receipt Conclude the order process 6



Spring 
RESTBucks
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Web

Service

Repository

-

Orders

Spring Data

Spring Data 
REST

Payment

Spring Data

Manual 
implementation

Manual 
implementation



JacksonCustomizations 

Externalize tweaks to the 
general JSON design
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Spring Data REST 
for the CRUDdy parts.
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ResourceProcessor 

To conditionally sneak 
links into the default 

representation.
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Code
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Spring RESTBucks - https://github.com/olivergierke/spring-restbucks



Questions?
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