Functional
Programming
From
First
Principles

[0 blogs.msdn.com/b/ericlippert/archive/2009/11/12/closing-over-the-loop-variable-considered-harmful.aspx

Closing over the loop variable considered harmful

RATE THIS
Eric Lippert 12 Nov 2009 6:50 AM 134

(This is part one of a two-part series on the loop-variable-closure problem. Part two is here.)

UPDATE: We are taking the breaking change. In C# 5, the loop variable of a foreach will be logically inside the
loop, and therefore closures will close over a fresh copy of the variable each time. The "for" loop will not
be changed. We return you now to our original article.

I don't know why | haven't blogged about this one before; this is the single most common incorrect bug report
we get. That is, someone thinks they have found a bug in the compiler, but in fact the compiler is correct and
their code is wrong. That's a terrible situation for everyone; we very much wish to design a language which does
not have "gotcha” features like this.

But I'm getting ahead of myself. What's the output of this fragment?

var values = new List<int>{) { 100, 110, 120 };
var funcs = new List<Func<int>>();
foreach(var v in values)
funcs.Add((Q=>v);
foreach(var ¥ in funcs)
Cconsole.writeLine(f());

Most people expectitto be 100 / 110/ 120. Iltisinfact 120 / 120 / 120. Why?

Because (Q=>v means “return the current value of variable v", not "return the value v was back when the
delegate was created”. Closures close over variables, not over values. And when the methods run, clearly
the last value that was assigned to v was 120, so it still has that value.

This is very confusing. The correct way to write the code is:

Where is the loop variable declared?

foreach(var i in new[]{90,1,2,3,4})
{

Console.WritelLine(i);

}

var i_ = default(int); « Outside?
foreach(var i in new[]{0,1,2,3,4})
{

i = 1i;

Console.WritelLine(i_);

}

foreach(var i in new[]{90,1,2,3,4})

var 1 =1 ;

Console.WritelLine(_1i);

}

DWNRERO® A WNEO®

P WDNEO

Where is the loop variable declared?

foreach(var i in new[]{90,1,2,3,4})
{

Console.WritelLine(i);
}

var i_ = default(int);
foreach(var i in new[]{90,1,2,3,4})

{ Who cares?
i o= i /

ansole.WPiteLine(i_);

}

foreach(var i in new[]{90,1,2,3,4})
{
var 1 =1 ;
Console.WritelLine(_1i);

}

var fis = new List<Action>();
foreach(var i in new[]{9,1,2,3,4})
{

¥

foreach(var fi in fis) fi();

fis.Add(delegate{ Console.WritelLine(i);});

Let’s capture it

var fis = new List<Action>(); and see what happens
var i_ = default(int);
foreach(var i in new[]{9,1,2,3,4})
t : Outside?
i = 1;
fjs.Add(delegate{ Console.WritelLine(i);});

}

foreach(var fi in fis) fi();

var fis = new List<Action>();

foreach(var i in new[]{9,1,2,3,4})

{ o . Inside?
var _i = i;
fis.Add(delegate{ Console.WritelLine(_i);});

}

foreach(var fi in fis) fi();

CHA

I O N N NN i N N N NG N

P WDNEO

. . . C#S

var fis = new List<Action>();
foreach(var i in new[]{9,1,2,3,4}) 9
{ 1
fis.Add(delegate{ Console.WritelLine(i);}); &
} 3
foreach(var fi in fis) fi(); 4

var fis = new List<Action>();
var i_ = default(int);
foreach(var i in new[]{9,1,2,3,4})
{
i = 1;
fjs.Add(delegate{ Console.WritelLine(i);});
}

foreach(var fi in fis) fi();

var fis = new List<Action>();
foreach(var i in new[]{0,1,2,3,4})
{
var 1 = i;
fis.Add(delegate{ Console.WritelLine(_1);});
}

foreach(var fi in fis) fi();

var fis = new List<Action>();
for(var i = 0; i < 5; i++)

{
¥

foreach(var fi in fis) fi();

fis.Add(delegate{ Console.WritelLine(i);});

var fis = new List<Action>();
var i_ = default(int);
for(i_ =0; i < 5; i ++)

{
¥

foreach(var fi in fis) fi();

fjs.Add(delegate{ Console.WriteLine(i_);});

var fis = new List<Action>();
for(var i = 0; i < 5; i++)
{
var i = i;
fls.Add(delegate{ Console.WritelLine(_1i);});
}

foreach(var fi in fis) fi();

Ul Ul U1 U1 U vl Ul Ul Ul Ui

P WDNEO

Who
Gets
The

Blame?

The Real World is Imperative

Look again

Still don’t believe me?!

This monkey is now dead
May it rest in peace.

foreach(var i in new[]{9,1,2,3,4})
{

innocent

var fis = new List<Action>();

fis.Add(delegate{ Console.WritelLine(i);});

foreach(var fi in fis) fi(); innocent

Acknowledge the presence
of side-effects

producer consumer

(0) read value mutable variable of type T

(1) If you want to see next value
call this Func<T> (i.e. ()—=2T) to get it.

(2) Here is an Action<T> (i.e. T=>()), notify me when the next
value is available.

How to communicate a stream of values
between producer and consumer?

Operational Details

Initial handshake

e

Consumer is not
interested
Interested in
more values

Producer has run out
of values

Pull-based protocol
(consumer asks for values)

interface IEnumerable<T>

{
}

IEnumerator<T> GetEnumerator(); | Initial handshake

interface IEnumerable<T> : IDisposable

{

bool MoveNext(); Call when want next value
T Current { get; } | ()>T+()+Exception;

}

interface IDisposable

{
void Dispose(); |!won’tbotheryouanymore,
} you may forget about me.

Push-based protocol

(consumer gets notified of values)

interface IObservable<T>

{
}

IDisposable Subscribe(IObserver<T> observer);

interface IObserver<T>

Initial handshake

{ Notify when next value available
T+()+Exception—>();

void OnNext(T value);
void OnCompleted();

void OnError(Exception error);

}

interface IDisposable

{

void Dispose(); | won’t bother you anymore,
) you may forget about me.

Producer

IObservable<T>

e, 1, 2, 3, 5, .
ﬁ

TEnumerable<T>

What if precisely one value?

class Lazy<T>

{
T Value { get; } Pull

}
class Task<T> Push
{
Task<S> ContinueWith<S»>
(Func<Task<T»>,S> continuation){ .. }
T Result{ get; }
}

(Note concrete classes, not interfaces ®)

Pull T/Lazy<T>

Push Task<T>

Five-spice powder The formulae are

VI ET1)Y

IEnumerable<T>

IObservable<T>

From Wikipedia, the free encyclopedia b a Se d O n t h e
This article is about Chinese five-spice . .
Chinese philosophy
. of balancing the yin
Contents [hide]
1 Formulae and yang In fOOd-

2 Usage

3 References [W|k|ped|a]

4 See also

Five-spice powder is a mixture of five spi
cookery.m

Formulae [edit]

The formulae are based on the Chinese philosophy of balancing the yin and yang in food. There are many
variants. The most common is bajiao (star anise), cloves, cinnamon, huajiao (Sichuan pepper) and ground
fennel seeds.[?! Instead of true cinnamon, "Chinese cinnamon" (also known as rougui, the ground bark of the
cassia tree, a close relative of true cinnamon which is often sold as cinnamon), may be used. The spices need
not be used in equal quantities.[zl

Five-spice powder

r .

B
Chinese HEH
Hanyu Pinyin wiixiangfén

Transcriptions

[show]

Another variant is funghing or "Chinese cinnamon" (powdered cassia buds), powdered star anise and anise seed, ginger root, and ground cloves.

In Chinese philosophy, the concept of yin-yang (simplified
Chinese: BAPR; traditional Chinese: f£F&; pinyin: yinyang),
which is often referred to in the West as "yin and yang",
literally meaning "shadow and light", is used to describe
how polar opposites or seemingly contrary forces are
interconnected and interdependent in the natural world,
and how they give rise to each other in turn in relation to
each other. [Wikipedia]

Interface
versus
Implementation

TEnumerable<T>

interface

Essence

Make all assumptions
explicit

T[]

List<T>
HashTable<K,T>

concrete class

Implementation
details

In most OO languages
the distinction is blurred

interface IA {}
abstract class A {}
static class B {}
sealed class C {}

class D

{ protected private virtual partial
Foo Bar()
{ .. this .. }

¥

'FO].dr‘ - (a 9 b 9 b) Concrete type

2> b /;ZD
2 ([a] = b)

foldr :: Foldable t
9 (a 9 b 9 b‘N Qualified type

9b GOOD
-2 (t a 2 b)

find :: Foldable t = (a - Bool)
- t a =2 Maybe a

class Foldable t where

{
fold :: Monoid m = t m 2 m
foldMap :: Monoid m =2 (a ém) 2> t a 2> m
foldr :: (a 2 b 2> b) 2> b ta—=2>0b
foldl :: (a 2 b > a) 2> a > tb > a
}
class Monoid m where
{
mempty :: m
mappend :: m 2> m 2> m
mconcat :: [m] =2 m

fold :: Monoid m = t m - m

e

Implicit parameter
Controlled “injection”
Competent

Roughly
a shorthand for

fold :: (m, m>m>m,[m]>m)

2> tm \
2 m
All dependencies are explicit

No “injection”
Dreyfus Novice

fold :: (m, m>m->m,[m]->m)
2> tm
-2 m

Concrete type

BAD ©

Interface-based programming
to the extreme: Category Theory

58
B

f U g
id

e e

Objects, Morphisms and Composition

Dreyfus proficient

Dual (category theory)

From Wikipedia, the free encyclopedia

In category theory, a branch of mathematics, duality is a
correspondence between properties of a category C and so-
called dual properties of the opposite category C°P. Given a
statement regarding the category C, by interchanging the
source and target of each morphism as well as interchanging
the order of composing two morphisms, a corresponding
dual statement is obtained regarding the opposite category
CP°P. Duality, as such, is the assertion that truth is invariant
under this operation on statements. In other words, if a
statement is true about C, then its dual statement is true
about C°P. Also, if a statement is false about C, then its dual
has to be false about C°P.

Given a concrete category C, it is often the case that the
opposite category C°P per se is abstract. C°P need not be a
category that arises from mathematical practice. In this case,
another category D is also termed to be in duality with C if D
and C°P are equivalent as categories.

In the case when C and its opposite C°P are equivalent, such
a category is self-dual.

Obsession with monads is a medical condition
(thanks Pat Helland)

If " and (are a pair of adjoint functors, with [left adjoint to (3, then the composition (7 o F'is a monad. Therefore, a monad is an endofunctor. If

and (7 are inverse functors the corresponding monad is the identity functor. In ggneral adjunctions are not equivalences — they relate categories of different
natures. The monad theory matters as part of the effort to capture what it |
likewise from consideration of |' o (3, is discussed under the dual t onads.

The monad axioms can be seen at work in a simple example: let r' be

as J" we can take the free group functor.

This means that the monad “\0
T'=GokF

takes a set _Y and returns the under‘ﬁ“ﬂe free ouw } In is situation, we are given two natural morphisms:

X — T(X)

by including any set X in Free(_\—} in t‘““a’ as stig \fa 1. Further,

T(T(X)) — T(X)

can be made out of a natural concatenation or 'ﬂ Jrings of strings'. This amounts to two natural transformations
I =T 6

and
ToTlT =T

They will satisfy some axioms about identity and associativity that result from the adjunction properties.

Those axioms are formally similar to the monoid axioms. They are taken as the definition of a general monad (not assumed a priori to be connected to an
adjunction) on a category.

IEnumerable<T>
Monad

() AN (()QT) CoMonad

Dual?

I
Does it

IObservable<T> really

matter ...

(T50) > 0O

Iobserver<T>

ITEnumerator<T>

Functional “Programming” is
a tool for thought

“Imperative” Programming is
a tool for hacking

You are the Chef

T StarAnise(){ ..}

Lazy<T> Cloves(){..}

Task<T> Cinnamon() {...}
IEnumerable<T> Pepper(){ ..}

IObservable<T> Fennel() {..}

