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What is Datomic?

• A new database

• Bringing data power into the application

• A sound model of information, with time

• Enabled by architectural and capacity 
advances



Complexity

• Out of the Tar Pit

Moseley and Marks (2006)

• Complexity caused by state and control

• Close the loop - process

http://www.google.com/url?sa=t&rct=j&q=out%20of%20the%20tar%20pit&source=web&cd=1&ved=0CCoQFjAA&url=http%3A%2F%2Fweb.mac.com%2Fben_moseley%2Ffrp%2Fpaper-v1_01.pdf&ei=E_dgT8v2L8Pgggftt7CFCA&usg=AFQjCNF05vdF5Lg9zbWCAkkGjEU9UeF6bw
http://www.google.com/url?sa=t&rct=j&q=out%20of%20the%20tar%20pit&source=web&cd=1&ved=0CCoQFjAA&url=http%3A%2F%2Fweb.mac.com%2Fben_moseley%2Ffrp%2Fpaper-v1_01.pdf&ei=E_dgT8v2L8Pgggftt7CFCA&usg=AFQjCNF05vdF5Lg9zbWCAkkGjEU9UeF6bw


Information

• Inform

• ‘to convey knowledge via facts’

• ‘give shape to (the mind)’

• Information

• the facts



DB Complexity

• Stateful, inextricably

• Same query, different results

• no basis

• Over there

• ‘Update’ poorly defined

• Places



Basis

• Calculation and decision making:

may involve multiple components

may visit a component more than once

• Broken by simultaneous change



Update

• What does update mean?

• Does the new replace the old?

• Granularity? new ___ replace the old ___

• Visibility?



Manifestations

• Wrong programs

• Scaling problems

• Round-trip fears

• Fear of overloading server

• Coupling, e.g. questions with reporting



The Choices

• Coordination

• how much, and where?

• process requires it

• perception shouldn’t

• Immutability

• sine qua non



Coming to Terms
Value

• An immutable 
magnitude, quantity, 
number... or immutable 
composite thereof

Identity

• A putative entity we 
associate with a series of 
causally related values 
(states) over time

State

• Value of an identity at a 
moment in time

Time

• Relative before/after 
ordering of causal values
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Implementing Values

• Persistent data structures

• Trees

• Structural sharing



Structural Sharing

Past
Next
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Database State

• The database as an expanding value

• An accretion of facts

• The past doesn’t change - immutable

• Process requires new space

• Fundamental move away from places



Accretion
• Root per transaction doesn’t work

• Crossing processes and time

• Can’t convey/find/maintain roots

• Can’t do global GC

• Instead, latest values include past as well

• The past is sub-range

• Important for information model



• Fact - ‘an event or thing known to have 
happened or existed’

• From: factum - ‘something done’

• Must include time

• Remove structure (a la RDF)

• Atomic Datom 

• Entity/Attribute/Value/Transaction

Facts



Process

• Reified

• Primitive representation of novelty

• Assertions and retractions of facts

• Minimal

• Other transformations expand into those



Implementation



Deconstruction

• Process

• Transactions

• Indexing

• O
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Server

Indexing
Trans-
actions

Query I/O Disk



State

• Must be organized to support query

• Sorted set of facts

• Maintaining sort live in storage - bad

• BigTable - mem + storage merge

• occasional merge into storage

• persistent trees



Transactions and 
Indexing

Index
Merging

Trans-
actions

Log Data Segments

Live 
Index

Index Data Segments

Storage

Novelty



Perception
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Memory Index

• Persistent sorted set

• Large internal nodes

• Pluggable comparators

• 2 sorts always maintained

• EAVT, AEVT

• plus AVET, VAET



Storage

• Log of tx asserts/retracts (in tree)

• Various covering indexes (trees)

• Storage requirements

• Data segment values (K->V)

• atoms (consistent read)

• pods (conditional put)



What’s in a DB Value?
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Process

• Assert/retract can’t express transformation

• Transaction function: 

(f db & args) -> tx-data

• tx-data: assert|retract|(tx-fn args...)

• Expand/splice until all assert/retracts



Process Expansion

++ ++foo- -

baz++ ++bar- -

...+++ -++ +++- -



Transactor

• Accepts transactions

• Expands, applies, logs, broadcasts

• Periodic indexing, in background

• Indexing creates garbage

• Storage GC



Peers

• Peers directly access storage service

• Have own query engine

• Have live mem index and merging

• Two-tier cache

• Segments (on/off heap)

• Datoms w/object values (on heap)



DB Simplicity

• Epochal state

• Coordination only for process

• Same query, same results

• stable bases

• Transactions well defined

• Functional accretion



Other Benefits

• Communicable, recoverable basis

• Freedom to relocate/scale storage, query

• Time travel - db.asOf, db.since, db.asIf

• Queries comparing times

• Process events



The Database as a Value

• Dramatically less complex

• More powerful

• More scalable

• Better information model



Thanks for Listening!


