
The Database as a Value
Rich Hickey

What is Datomic?

• A new database

• Bringing data power into the application

• A sound model of information, with time

• Enabled by architectural and capacity
advances

Complexity

• Out of the Tar Pit

Moseley and Marks (2006)

• Complexity caused by state and control

• Close the loop - process

http://www.google.com/url?sa=t&rct=j&q=out%20of%20the%20tar%20pit&source=web&cd=1&ved=0CCoQFjAA&url=http%3A%2F%2Fweb.mac.com%2Fben_moseley%2Ffrp%2Fpaper-v1_01.pdf&ei=E_dgT8v2L8Pgggftt7CFCA&usg=AFQjCNF05vdF5Lg9zbWCAkkGjEU9UeF6bw
http://www.google.com/url?sa=t&rct=j&q=out%20of%20the%20tar%20pit&source=web&cd=1&ved=0CCoQFjAA&url=http%3A%2F%2Fweb.mac.com%2Fben_moseley%2Ffrp%2Fpaper-v1_01.pdf&ei=E_dgT8v2L8Pgggftt7CFCA&usg=AFQjCNF05vdF5Lg9zbWCAkkGjEU9UeF6bw

Information

• Inform

• ‘to convey knowledge via facts’

• ‘give shape to (the mind)’

• Information

• the facts

DB Complexity

• Stateful, inextricably

• Same query, different results

• no basis

• Over there

• ‘Update’ poorly defined

• Places

Basis

• Calculation and decision making:

may involve multiple components

may visit a component more than once

• Broken by simultaneous change

Update

• What does update mean?

• Does the new replace the old?

• Granularity? new ___ replace the old ___

• Visibility?

Manifestations

• Wrong programs

• Scaling problems

• Round-trip fears

• Fear of overloading server

• Coupling, e.g. questions with reporting

The Choices

• Coordination

• how much, and where?

• process requires it

• perception shouldn’t

• Immutability

• sine qua non

Coming to Terms
Value

• An immutable
magnitude, quantity,
number... or immutable
composite thereof

Identity

• A putative entity we
associate with a series of
causally related values
(states) over time

State

• Value of an identity at a
moment in time

Time

• Relative before/after
ordering of causal values

v1

F

v2

F

v3

F

v4

Process events
(pure functions)

Observers/perception/memory

States
(immutable values)Identity

(succession of
states)

Epochal Time Model

Implementing Values

• Persistent data structures

• Trees

• Structural sharing

Structural Sharing

Past
Next

Process events
(pure functions)

Observers/perception/memory

Identity
(succession of

states)

Place Model

DB
Connection

Transactions

Queries

The Database Place

F F F

v1

F

v2

F

v3

F

v4

Process events
(pure functions)

Observers/perception/memory

States
(immutable values)Identity

(succession of
states)

Epochal Time Model

DB
Connection

Transactions

DB Values

Queries

Database State

• The database as an expanding value

• An accretion of facts

• The past doesn’t change - immutable

• Process requires new space

• Fundamental move away from places

Accretion
• Root per transaction doesn’t work

• Crossing processes and time

• Can’t convey/find/maintain roots

• Can’t do global GC

• Instead, latest values include past as well

• The past is sub-range

• Important for information model

• Fact - ‘an event or thing known to have
happened or existed’

• From: factum - ‘something done’

• Must include time

• Remove structure (a la RDF)

• Atomic Datom

• Entity/Attribute/Value/Transaction

Facts

Process

• Reified

• Primitive representation of novelty

• Assertions and retractions of facts

• Minimal

• Other transformations expand into those

Implementation

Deconstruction

• Process

• Transactions

• Indexing

• O

• Perception/Reaction

• Query

• Indexes

• I

Server

Indexing
Trans-
actions

Query I/O Disk

State

• Must be organized to support query

• Sorted set of facts

• Maintaining sort live in storage - bad

• BigTable - mem + storage merge

• occasional merge into storage

• persistent trees

Transactions and
Indexing

Index
Merging

Trans-
actions

Log Data Segments

Live
Index

Index Data Segments

Storage

Novelty

Perception

Live
Index Storage

Index Data Segments

Novelty

Datomic Architecture
App Process

Peer Lib

Query

Cache

App

Live
IndexComm

Transactor

Indexing Trans-
actions

Data Segments

Data Segments
Redundant

segment storage

Storage Service

Segment storage

Memory Index

• Persistent sorted set

• Large internal nodes

• Pluggable comparators

• 2 sorts always maintained

• EAVT, AEVT

• plus AVET, VAET

Storage

• Log of tx asserts/retracts (in tree)

• Various covering indexes (trees)

• Storage requirements

• Data segment values (K->V)

• atoms (consistent read)

• pods (conditional put)

What’s in a DB Value?

EAVT

t
VeAET
AEVT

db atom

nextT
asOfT

Lucene index

history

live Lucene

sinceT

index

db value
live Storage

Hierarchical
Cache

Roots

Memory index
(live window)

Storage-backed index

Identity

Value

Index Storage

Sorted
Datoms

Index Root
of key->dir

T
42

VeAETAEVT AVET LuceneEAVT

Storage
Service

dirs

segs

Process

• Assert/retract can’t express transformation

• Transaction function:

(f db & args) -> tx-data

• tx-data: assert|retract|(tx-fn args...)

• Expand/splice until all assert/retracts

Process Expansion

++ ++foo- -

baz++ ++bar- -

...+++ -++ +++- -

Transactor

• Accepts transactions

• Expands, applies, logs, broadcasts

• Periodic indexing, in background

• Indexing creates garbage

• Storage GC

Peers

• Peers directly access storage service

• Have own query engine

• Have live mem index and merging

• Two-tier cache

• Segments (on/off heap)

• Datoms w/object values (on heap)

DB Simplicity

• Epochal state

• Coordination only for process

• Same query, same results

• stable bases

• Transactions well defined

• Functional accretion

Other Benefits

• Communicable, recoverable basis

• Freedom to relocate/scale storage, query

• Time travel - db.asOf, db.since, db.asIf

• Queries comparing times

• Process events

The Database as a Value

• Dramatically less complex

• More powerful

• More scalable

• Better information model

Thanks for Listening!

