Seventeen Things We
@ Did To Scale Our System

Bjorn Freeman-Benson
New Relic

@bjorn_fb




O New Relic

9O ms
£2 Database g

27.0:1a

H M Memcache 0.32 =
226 ms

\ RPM UI

i 1.9 sec H AL

[ & End User )

4,062
/ 13:1

346 ¢c

0.89 [2.4]

api.heroku.com 325 ms )
@ nr-

Chi-app-1 + Overview Processes

Network Disks

CPU usage

30 minutes -

Load average

\J‘
194 throughput

_'J Hide <

time
Average page load

ime
oad tim
o5 by average page — —
i New Re 3
sortby Gountr nr-chv-app-tnewrelic.com
NE:
4 B 24CrUs
7 sec ¢ ~ 47 GB RAM
Germany 4 Intel Xeon
i 2.5seC X A Red Hat Enterprise Linyy
lia 50

Austr@ - Server release 5.5

. 1.9seC (Tikanga)

Braz 1
1.4 s€C °'
canada —
ation 4 56C 0 suap B Useq 3 .
ssian Feder 1. € Throughput Errors
Au =
c
ited States 1.3 s@ 5 ¥ utilization Network 10 (Mag) 2
Unif B S RPM U (nr-chi-app-1. 230ms 1,627 Pm 0.03%
8 sec y newrehc.com}
Hungary 08 &f
)
m & Collector Proxy (nr-chi 35ms 1,835 rpm 0.00%
United Kingdo -app-1 -newrelic.com)
—
—
Processes _, User Count  cpy Memory
7258C ruby pmui 24 2029 9.8GB
— & VolGroupOU-LogVolOO Transmitteq Receiveq
ge load time — Memcacheq Mmemcached 1 00%
pa =
Average“: dtime
e loa
1.2'5€¢ py average Pag
ntries
Top coU

1GB




Simplified Architecture

O New Relic

Our datacenter

Throughput (rpm)

1750
1500

1250




Simplified Architecture

O New Relic

Customer’s
customers

OO =1 S mnn

Customer’s datacenter




Our growth

In 5 years, zero to 40,000 accounts...
... largest account has 17,000 servers

... 108 x 10° metrics per day
(75 x 10° per minute)

... 8Th of data a day
(5.5Gb per minute)

hetp:// b'\t.\ylnewre\ic__stats




Lean Startup

O New Relic

As a start-up: first prove that we had
something, then scale




Lean Startup

O New Relic

As a start-up: first prove that we had
something, then scale, but plan to scale

The Search for the Business Model ' The Execution of the Business Model

- Business Model found - Cash-flow breakeven
- Product/Market fit - Profitable
- Repeatable sales model - Rapid scale
- Managers hired - New Senior Mgmt
~ 150 people




Our First System

PaaS at Engine Yard
8 physical machines with multiple VMs

Everything in Ruby
Homegrown load balancer
Separate processes for each activity

Perfect system for the
“Search for Business Model”




System Characteristics

1. Every app instance of every customer
sends us data every minute

2. Only a subset of customers view the

data on any given minute

3. Data has a steep half-life: most
interesting data is seconds old

4. Accuracy Is essential




The Basics (5)

19

THE BASICS




O New Relic

Reduce the number of connections to
the servers

F5 buffers requests and handles SSL

,3 ?F ‘:: "
F5 BigIP Local Traffic Manager




#2: Bare metal

VMs didn’t work well for us
|/0 latency problems

I/0 bandwidth jitter

Ruby is very memory heavy and VMs
don’t handle memory mapping as well
as native CPUs




#3: Direct Attached Storage

O New Relic

MySQL depends on really fast
write commits

Thus we need the disk cache as
close to the cpu as possible

Storage Array

SAN switches




#4: No App Servers

Our high throughput collector
processes don’t need app servers
so they are native Java apps with

an embedded Jetty

Beacon 0.144 ms 2.16M rpm 0.0023 %

Aggregator 337 ms 1.39M pm  0.0494 %




#5: Unicorn

Every worker shares the socket so
there’s no need for a dispatcher

Also easy to live-deploy new code -

helps with our Continuous Deployment

eeps/[bitly[UAPARX




The Usual Suspects (4)




#6: Agent Protocol

O New Relic

Our first agent protocol was quick and
dirty: Ruby object serialization and
multiple round trips

def marshal_data(data)
NewRelic: :LanguageSupport.with_cautious_gc do
Marshal .dump(data)
end
rescue => e
log.debug("#{e.class.name} : #{e.message} when marshalling #{object}")
raise
end

Refined: reduce round-trips (package
more data into the payload); keep-alive

@bjorn_fb




#7: Accumulate & Resend

O New Relic

O O S S g Cmmm—

o DO = S — o DO =S unn —

—
If a service Is temporarily unavailable,
accumulate and retry

recover_from_communication_error:

nr__log (NRL_DEBUG, "[¥s] recovering from communication error..", appname);
nr__close_connection_to_daemon (nrdaemon);

nrthread_mutex_lock (&app->lock); {
nr_metric_table__merge_metrics_from_to (data->metrics, app->pending_harvest->metr

nr__merge_slow_transactions_from_to (&(data->slow_transactions), &(app->pending_h
nr__merge_errors_from_to (&(data->errors), &(app->pending_harvest->errors));




#8: Large Accounts

O New Relic

Our first customers were small.

Later larger customers stretched our
assumptions. We added smart sorting,
searching, paging, etc.

There are too many servers for us to display at once. We're only showing the top 200 of your 3157 servers,

Go to a list of all of your servers —

Fiterbyapp ~+ search host names




#9: ORM Issues

O New Relic

ORMs (Rails) are nice but can quickly
load too many objects. Do a careful
audit of slow code.

Slow transactions — Resp. Time

Chngata::MetricChansController#app breakd... 435 ms
A‘pi::\-n::DataController’#multi app_data 2,230 ms
ApplIcatio.nsController#index 527 ms
A.DIZ‘Z\:“IZDéIBCOBiI’OHéF#fﬂU“I app_data 1,343 ms
A:pplicationsContrc;ller#.index 1,272 ms

Show all slow transactions —




The Clever Stuff (6)

UNITED FEDERATION OF AWESOMENESS

@bjorn_fb




O New Relic #1 O: Pre'comPUte

Pre-compute expensive queries

& Beacon » i 935,975rpm  0.01% & T

-

& Beacon 1 ! 724.634pm vy 0.01% O

& Beacon 2
@ Aggregator »_ . Beacon 1 chi-beacon-1

& Aggregator 0

& Aggregator 1 A€
__ Beacon 2 chi-beacon-2
& Aggregator 2 - 4g N

& Aggregator 3

Beacon

s\'\desha.releC3vB

@bjorn_fb

hetp://




#11: Real-time BG

Background job to roll-up timeslice
data: minutes to hours, hours to days

( Collector ) ( Collector )
0 o)

\\ (BGJoi)




#12: Different DBs

O New Relic

Different data has different characteristics
Account data is classic relational
Timeslice data is write-once

Use different database instances for each
kind of data

Different tuning parameters (buffer pools, etc)
Similar to buddy memory allocation

eep: it ly VIQGER

@bjorn_fb




#13: Non-gc gc

Problem: Deleting rows is expensive
(due to table-level locking)

Solution: Don’t delete rows

Schema has multiple tables
(one per account per time period)

Use DROP TABLE for gc

Similar to the 100-request restart
at amazon.com/obidos in 1999




#14: Computation in DB

Natural sharding allows us to push
computation into the db

Supported by schema
Limits number of rows returned

Thus allows scripting language (Ruby)
to do ‘real’ work

Opposite of the classical advice of
doing nothing in the db

@bjorn_fb




#15: SSDs

O New Relic

sequential
writes

random
reads

0:01 0:02 0:03 0:04




#15: SSDs

O New Relic

random
writes

sequential
reads

0:01




#15: SSDs

O New Relic

Choose sequential reads because of Ul
Use buffers to help random writes, but...

Switched to SSDs

writes are same or slightly slower
reads are fast, random or sequential

write limits not a problem due to non-rewrite
nature of our data tables




The Optimizations (2)




#16: Moving Processes

Different processes have different
performance characteristics: cpu,
memory, i/o, time of day, etc.

Allocate processes to machines to
balance the resource requirements

Instead of “all type X processes on M1 and
Ys on M2” we balance the machines




#17: Moving Customers

O New Relic

Customers have different data
characteristics: size, access patterns, ...

Allocate customers to shards to
balance the size and loads on the
shards

Required an early architectural decision to
allow data split between shards







Take-away

O New Relic

1. Do the basics
2. Design in some scalability

3. Use the unique characteristics
of your app to optimize

4. Buzzwords I
Measures TR\ Collects
not needed | © 978,230 a8 40,430,000

, Web Page Views VG \ Metrics Per Minyte
Per Minute

i That’s = Wow! That's “«:'f'
@bjorn_fb " 1,408,649,760 58,222,000,000
— per day! per day!




