
Seventeen Things We
Did To Scale Our System

Bjorn Freeman-Benson
New Relic
@bjorn_(

http://bit.ly/c_
sources

New Relic

Simplified Architecture

Customer’s environment

Our datacenter

@bjorn_(

Simplified Architecture

Customer’s datacenter

Our datacenter

Customer’s
customers

Our growth

• In 5 years, zero to 40,000 accounts...
• ... largest account has 17,000 servers
• ... 108 x 109 metrics per day

 (75 x 106 per minute)
• ... 8Tb of data a day

 (5.5Gb per minute)

http://bit.ly/ne
wrelic_stats

@bjorn_(

Lean Startup

• As a start-up: first prove that we had
something, then scale

http://amzn.to
/V86o4v

@bjorn_(

Lean Startup

• As a start-up: first prove that we had
something, then scale, but plan to scale

http://bit.ly/PP
j3Yi

Our First System

• PaaS at Engine Yard
• 8 physical machines with multiple VMs
• Everything in Ruby
• Homegrown load balancer
• Separate processes for each activity
• Perfect system for the

“Search for Business Model”
@bjorn_(

http://bit.ly/Tu
Oibr

System Characteristics

1. Every app instance of every customer
sends us data every minute

2. Only a subset of customers view the
data on any given minute

3. Data has a steep half-life: most
interesting data is seconds old

4. Accuracy is essential
@bjorn_(

The Basics (5)

@bjorn_(

#1: F5

• Reduce the number of connections to
the servers
• F5 buffers requests and handles SSL

@bjorn_(

#2: Bare metal

• VMs didn’t work well for us
• I/O latency problems
• I/O bandwidth jitter
• Ruby is very memory heavy and VMs

don’t handle memory mapping as well
as native CPUs

http://bit.ly/St
mu5t

@bjorn_(

#3: Direct Attached Storage

• MySQL depends on really fast
write commits

• Thus we need the disk cache as
close to the cpu as possible

😠
☺

@bjorn_(

#4: No App Servers

• Our high throughput collector
processes don’t need app servers
so they are native Java apps with
an embedded Jetty

http://bit.ly/Q
rOExM

@bjorn_(

#5: Unicorn

• Every worker shares the socket so
there’s no need for a dispatcher

• Also easy to live-deploy new code -
helps with our Continuous Deployment

http://bit.ly/UA
PARX

@bjorn_(

The Usual Suspects (4)

@bjorn_(

#6: Agent Protocol

• Our first agent protocol was quick and
dirty: Ruby object serialization and
multiple round trips

• Refined: reduce round-trips (package
more data into the payload); keep-alive

@bjorn_(

#7: Accumulate & Resend

• If a service is temporarily unavailable,
accumulate and retry

#8: Large Accounts

• Our first customers were small.
• Later larger customers stretched our

assumptions. We added smart sorting,
searching, paging, etc.

@bjorn_(

#9: ORM Issues

• ORMs (Rails) are nice but can quickly
load too many objects. Do a careful
audit of slow code.

@bjorn_(

The Clever Stuff (6)

@bjorn_(

#10: Pre-compute

• Pre-compute expensive queries

http://slidesha.
re/WwC3vB

@bjorn_(

#11: Real-time BG

• Background job to roll-up timeslice
data: minutes to hours, hours to days

Minute Hour Day

Collector

BG Job BG Job

Minute Hour Day

Collector

BG Job

@bjorn_(

#12: Different DBs

• Different data has different characteristics
• Account data is classic relational
• Timeslice data is write-once

• Use different database instances for each
kind of data
• Different tuning parameters (buffer pools, etc)
• Similar to buddy memory allocation

http://bit.ly/Vf
QG8R

@bjorn_(

#13: Non-gc gc

• Problem: Deleting rows is expensive
 (due to table-level locking)

• Solution: Don’t delete rows
• Schema has multiple tables

(one per account per time period)
• Use DROP TABLE for gc

• Similar to the 100-request restart
at amazon.com/obidos in 1999

@bjorn_(

#14: Computation in DB

• Natural sharding allows us to push
computation into the db
• Supported by schema
• Limits number of rows returned
• Thus allows scripting language (Ruby)

to do ‘real’ work

• Opposite of the classical advice of
doing nothing in the db

http://bit.ly/PF
ppZh

@bjorn_(

#15: SSDs

0:01 0:02 0:03 0:04

a

b

c

e

d

f

g

k

j

p

n

m

• sequential
writes

• random
reads

#15: SSDs

0:01 0:02 0:03 0:04

a

b

c

e

d

f

g

k

j

p

n

m

• random
writes

• sequential
reads

#15: SSDs

• Choose sequential reads because of UI
• Use buffers to help random writes, but...

• Switched to SSDs
• writes are same or slightly slower
• reads are fast, random or sequential
• write limits not a problem due to non-rewrite

nature of our data tables
@bjorn_(

The Optimizations (2)

@bjorn_(

• Different processes have different
performance characteristics: cpu,
memory, i/o, time of day, etc.

• Allocate processes to machines to
balance the resource requirements
• Instead of “all type X processes on M1 and

Ys on M2” we balance the machines

#16: Moving Processes

@bjorn_(

#17: Moving Customers

• Customers have different data
characteristics: size, access patterns, ...

• Allocate customers to shards to
balance the size and loads on the
shards
• Required an early architectural decision to

allow data split between shards

@bjorn_(

Take-away

@bjorn_(

Take-away

1. Do the basics
2. Design in some scalability
3. Use the unique characteristics

of your app to optimize
4. Buzzwords

not needed

@bjorn_(

