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Modernizing Java 
 

•  Java SE 8 is a big step forward in modernizing the 
Java Language 
•  Lambda Expressions (closures) 
•  Interface Evolution (default methods) 

•  Java SE 8 is a big step forward in modernizing the 
Java Libraries 
•  Bulk data operations on Collections 
•  More library support for parallelism 

•  Why do we choose the features we do? 
•  How do we evolve a mature language? 



Closures for Java – a long and winding road 

•  1997 – Odersky/Wadler experimental “Pizza” work 
•  1997 – Java 1.1 added inner classes – a weak form 

of closures 
•  Too bulky, complex name resolution rules, many limitations 

•  In 2006-2008, a vigorous community debate about 
closures 
•  Multiple proposals, including BGGA and CICE 
•  Each had a different orientation 

•  BGGA – creating control abstraction in libraries 
•  CICE – reducing syntactic overhead of inner classes 

•  Things ran aground at this point… 
•  Little evolution from Java SE 5 (2004) until now 

•  Project Coin (Small Language Changes) in Java SE 7 



Closures for Java – a long and winding road 



Closures for Java – a long and winding road 

•  Dec 2009 – OpenJDK Project Lambda formed 
•  November 2010 – JSR-335 filed 
•  Current status 

•  EDR specification complete 
•  Prototype (source and binary) available on OpenJDK 
•  Part of Java SE 8 (Summer 2013) 

•  JSR-335 = Lambda Expressions  
               + Interface Evolution  
               + Bulk Collection Operations 



Evolving a major language 

•  Key evolutionary forces 
•  Adapting to change 

•  Everything changes: hardware, attitudes, fashions, 
problems, demographics 

•  Righting what’s wrong 
•  Inconsistencies, holes, poor user experience 

•  Maintaining compatibility 
•  Low tolerance for change that will break anything 

•  Preserving the core 
•  Can’t alienate user base in quest for “something better” 
•  Easy to focus on cool new stuff, but there’s lots of cool 

old stuff too 



Adapting to Change 
 

•  In 1995, most mainstream languages did not support 
closures 
•  Perceived to be “too hard” for ordinary developers 

•  Today, Java is just about the last holdout that doesn’t 
•  C++ added them recently 
•  C# added them in 3.0 
•  New languages being designed today all do 

"In another thirty years people will laugh at anyone who tries to 
invent a language without closures, just as they'll laugh now at 
anyone who tries to invent a language without recursion."  
    -Mark Jason Dominus 



Adapting to Change 
 

•  In 1995, pervasive sequentiality infected 
programming language design 
•  For loops are sequential 

•  Why wouldn’t they be?  Why invite nondeterminism?   
•  Determinism is convenient – when free 
•  Similarly, Iterator/Iterable is sequential 

•  Pervasive mutability 
•  Mutability is convenient – when free 
•  Object creation was expensive and mutation cheap 

•  In today’s world, these are just the wrong defaults!   
•  Can’t just outlaw for loops and mutability 
•  Instead, gently encourage something better 

•  Lambda expressions is that gentle push 



Problem – External Iteration 

•  “Take the red blocks and colors them blue” 
•  Typical solution with foreach loop 

•  Loop is inherently sequential 
•  Wasn’t a big problem 20 years ago, but times change 

•  Client has to manage iteration 
•  Conflates “what” with “how” 

•  This is called external iteration 
•  Hides complex interaction between library and client 

for (Shape s : shapes) { 
    if (s.getColor() == RED) 
        s.setColor(BLUE); 
} 



Internal Iteration 

•  Re-written to use lambda and Collection.forEach 
•  Not just a syntactic change! 
•  Now the library is in control  
•  Internal iteration – More what, less how 
•  Client passes behavior into the API as data 

•  Library can use parallelism, out-of-order, laziness 
•  Also enable more powerful, expressive APIs 

•  Greater power to abstract over behavior 

shapes.forEach(s -> {  
    if (s.getColor() == RED) 
        s.setColor(BLUE); 
}) 



Lambda Expressions 

•  A lambda expression is an anonymous method 
•  Has an argument list, a return type, and a body 

  (Object o) -> o.toString() 
•  Can refer to values from the enclosing lexical scope 

  (Person p) -> p.getName().equals(name) 
•  Compiler can often infer parameter types from context 

  p -> p.getName().equals(name) 

•  A method reference is a reference to an existing 
method 
  Object::toString 

•  All of these forms allow you to treat code as data 
•  Behavior can be stored in variables and passed to methods 



What is the type of a lambda? 

•  Most languages with lambdas have some notion of a 
function type  
•  Java language has no concept of function type 
•  JVM has no native (unerased) representation of function 

type in VM type signatures 
•  Adding function types would create many questions 

•  How do we represent functions in VM type signatures? 
•  How do we create instances of function types? 
•  Want to avoid significant VM changes 

•  Obvious tool for representing function types is generics 
•  But then function types would be … erased 



Functional Interfaces 

•  Historically used single-method interfaces to model 
functions 
•  Runnable, Comparator, ActionListener 
•  Let’s just give these a name: functional interfaces 
•  And add some new ones like Predicate<T>, Block<T> 

•  A lambda expression evaluates to an instance of a 
functional interface 

Predicate<String> isEmpty = s -> s.isEmpty(); 

Predicate<String> isEmpty = String::isEmpty; 

Runnable r = () -> { System.out.println(“Boo!”) }; 



Functional Interfaces 

•  “Just add function types” was obvious … and wrong 
•  Would have introduced complexity and corner cases 
•  Would have bifurcated libraries into “old” and “new” styles 
•  Would have created interoperability challenges 

•  Preserve the Core 
•  Stodgy old approach may be better than shiny new one 

•  Bonus: existing libraries are now forward-compatible 
to lambdas 
•  Libraries that never imagined lambdas still work with them!   
•  Maintains significant investment in existing libraries 
•  Fewer new concepts 



Problem – Interface Evolution 

•  Example used a new Collection method – forEach() 
•  I thought you couldn’t add new methods to interfaces? 

•  Interfaces are a double-edged sword 
•  Cannot compatibly evolve them unless you control all 

implementations 
•  Reality: APIs age 

•  As we add cool new language features, existing APIs 
look even older! 

•  Lots of bad options for dealing with aging APIs 
•  Let the API stagnate  
•  Replace it in entirety (every few years!) 
•  Nail bags on the side (e.g., Collections.sort()) 



Interface Evolution 

•  Libraries need to evolve, or they stagnate 
•  Need a mechanism for compatibly evolving APIs 

•  New feature: default methods 
•  Virtual interface method with default implementation 
•  “default” is the dual of “abstract” 

•  Three simple rules for resolving inheritance conflicts 
•  Superclasses win over superinterfaces 
•  More specific interfaces win over less specific 
•  After that, concrete classes 

must override interface Collection<T> { 
    default void forEach(Block<T> action) { 
        for (T t : this) 
            action.apply(t); 
    } 
} 



Default Methods 

•  Similar to, but different from, C# extension methods 
•  Java’s default methods are virtual and declaration-site 
•  Core principle: API owners should control their APIs 

•  Primary goal is API evolution 
•  Inheritance rules directed at this primary goal 
•  But very useful as an inheritance mechanism on its own! 

•  Wait, is this multiple inheritance in Java? 
•  Java always had multiple inheritance of types 
•  This adds multiple inheritance of behavior 

•  But not of state, where most of the trouble comes from 



It’s All About The Libraries 

•  Generally, we prefer to evolve the programming 
model through libraries 
•  Time to market – can evolve libraries faster than language 
•  Decentralized – more library developers than language 

developers 
•  Risk – easier to change libraries, more practical to 

experiment  
•  Impact – language changes require coordinated changes to 

multiple compilers, IDEs, and other tools 
•  Sometimes we reach the limits of what is practical to 

express in libraries, and need a little help from the 
language 
•  A little help, in the right places, can go a long way!   



Lambdas Enable Better APIs 

•  Lambda expressions enable more powerful APIs 
•  Boundary between client and library is more permeable 
•  Client provides bits of behavior to be mixed into execution 

(“what”) 
•  Library remains in control of the computation (“how”) 
•  Safer, exposes more opportunities for optimization 

•  Key effect on APIs is: more composability 
•  Leads to better factoring, more regular client code, more 

reuse 

•  Lambdas in the language 
→ can write better libraries 
→ more readable, less error-prone user code 



Example: Sorting 

•  If we want to sort a List today, we write a Comparator 
•  Many layers of nastiness here! 

•  Conflates extraction of sort key with ordering of that key 
•  “Collections” class required for helper methods 
•  Syntactically verbose 

•  Could replace with a lambda, but only gets us so far 
•  Better to untangle the intertwined aspects 

•  Status quo reduces opportunities for reuse 

Collections.sort(people, new Comparator<Person>() { 
    public int compare(Person x, Person y) { 
        return x.getLastName().compareTo(y.getLastName()); 
    } 
}); 



Example: Sorting 

•  Lambdas encourage finer-grained APIs 
•  We add a method that takes a “key extractor” and returns 

Comparator 
•  The comparing() method is one built for lambdas 

•  Higher-order function 
•  Eliminates redundancy, boilerplate 

Comparator<Person> byLastName 
    = Comparators.comparing(p -> p.getLastName()); 

Class Comparators { 
    public static<T, U extends Comparable<? super U>>  
    Comparator<T> comparing(Mapper<T, U> m) { 
        return (x, y) -> m.map(x).compareTo(m.map(y)); 
    } 
} 



Example: Sorting 

Comparator<Person> byLastName 
    = Comparators.comparing(p -> p.getLastName()); 
Collections.sort(people, byLastName); 

Collections.sort(people, comparing(p -> 
p.getLastName()); 

people.sort(comparing(p -> p.getLastName()); 

people.sort(comparing(Person::getLastName)); 

people.sort(comparing(Person::getLastName).reverse()); 

people.sort(comparing(Person::getLastName) 
            .compose(comparing(Person::getFirstName))); 



Example – Sorting 

•  Default methods can enhance composability 
•  Comparator.reverse(), Comparator.compose() 
•  Default methods  

offer a “right place” 
to put certain code 

interface Comparator<T> { 
    int compare(T o1, T o2); 
 
    default Comparator<T> reverse() { 
        return (o1, o2) -> –(compare(o1, o2)); 
    } 
 
    default Comparator<T> compose(Comparator<T> other) { 
        return (o1, o2) -> { 
             int cmp = compare(o1, o2); 
             return (cmp != 0) ? cmp : other.compare(o1, o2); 
        } 
    } 
} 

Comparator<Person> byFirst = ... 
Comparator<Person> byLast = ... 
 
Comparator<Person> byFirstLast = byFirst.compose(byLast); 
Comparator<Person> byLastDescending = byLast.reverse(); 



Bulk operations on Collections 

•  Compute sum of weights of blue shapes 
•  Compose compound operations from basic building blocks 
•  Each stage does one thing 
•  Client code reads more like the problem statement 
•  Structure of client code is less brittle 
•  Less extraneous “noise” from intermediate results 

•  No “garbage variables” 
•  Library can use parallelism, out-of-order, laziness for 

performance 

 

 

int sumOfWeight  
    = shapes.stream() 
            .filter(s -> s.getColor() == BLUE) 
            .map(s -> s.getWeight()) 
            .sum(); 

int sumOfWeight  
    = shapes.stream() 
            .filter(s -> s.getColor() == BLUE) 
            .map(Shape::getWeight) 
            .sum(); 



Brief inspiration diversion 



Brief inspiration diversion 



Brief inspiration diversion 



Streams 

•  To add bulk operations, we create a new abstraction, 
Stream (in package java.util.stream) 
•  Key new library abstraction for JSR-335 
•  Represents a stream of values 

•  Not a data structure – doesn’t store the values 
•  Source can be a Collection, array, generating function, IO 
•  Encourages a “fluent” usage style 

•  Supports operations like filter(), map(), reduce() 
•  Retrofit stream() method on Collection 

•  As well as: Reader.lines(), Random.ints(), 
String.chars(), etc 

•  Easy to adapt any aggregate to be a Stream source 



Streams 

•  What does this code do? 
 Set<Group> groups = new HashSet<>(); 
 for (Person p : people) { 
     if (p.getAge() >= 65)  
         groups.add(p.getGroup()); 
 } 
 List<Group> sorted = new ArrayList<>(groups); 
 Collections.sort(sorted, new Comparator<Group>() {    
     public int compare(Group a, Group b) {  
         return Integer.compare(a.getSize(), b.getSize()) 
     } 
 }); 
 for (Group g : sorted) 
     System.out.println(g.getName()); 

people.stream() 
      .filter(p -> p.getAge() > 65) 
      .map(p -> p.getGroup()) 
      .removeDuplicates() 
      .sorted(comparing(g -> g.getSize()) 
      .forEach(g -> System.out.println(g.getName()); 



Parallelism 

•  Goal: easy-to-use parallel libraries for Java 
•  Libraries can hide a host of complex concerns  (task 

scheduling, thread management, load balancing) 

•  Goal: reduce conceptual and syntactic gap between 
serial and parallel expressions of the same 
computation 
•  Right now, the serial code and the parallel code for a given 

computation don’t look anything like each other 
•  Fork-join (added in Java SE 7) is a good start, but not 

enough 

•  Goal: parallelism should be explicit, but unobtrusive 



Fork/Join Parallelism 

•  JDK7 added general-purpose Fork/Join framework 
•  Powerful and efficient, but not so easy to program to 
•  Based on recursive decomposition 

•  Divide problem into subproblems, solve in parallel, 
combine results 

•  Keep dividing until small enough to solve sequentially 
•  Tends to be efficient across a wide range of processor 

counts 
•  Generates reasonable load balancing with no central 

coordination 



Parallel Sum with Fork/Join 

class SumProblem { 
 final List<Shape> shapes; 
final int size; 

 
  SumProblem(List<Shape> ls) { 
   this.shapes = ls; 
  size = ls.size(); 

 } 
 
 public int solveSequentially() { 
   int sum = 0; 
   for (Shape s : shapes) { 
     if (s.getColor() == BLUE)  
       sum += s.getWeight(); 
   } 
   return sum; 
 } 
 public SumProblem subproblem(int start, int end) { 
   return new SumProblem(shapes.subList(start, end)); 
 } 

} 

ForkJoinExecutor pool = new ForkJoinPool(nThreads); 
SumProblem finder = new SumProblem(problem); 
pool.invoke(finder); 
 
class SumFinder extends RecursiveAction { 
  private final SumProblem problem; 
  int sum; 
 
  protected void compute() { 
    if (problem.size < THRESHOLD) 
      sum = problem.solveSequentially(); 
    else { 
      int m = problem.size / 2; 
      SumFinder left, right; 
      left = new SumFinder(problem.subproblem(0, m)) 
      right = new SumFinder(problem.subproblem(m, problem.size)); 
      forkJoin(left, right); 
      sum = left.sum + right.sum; 
    } 
  } 
} 



Parallel Sum with Streams 

•  Explicit but unobtrusive parallelism 
•  All three operations fused into a single parallel pass 
•  Works with ordinary, non-thread-safe collections 
•  Extensible mechanism to work with any bulk container 
 

 

 

int sumOfWeight  
    = shapes.stream() 
            .filter(s -> s.getColor() == BLUE) 
            .map(s -> s.getWeight()) 
            .sum(); 

int sumOfWeight  
    = shapes.stream() 
            .filter(s -> s.getColor() == BLUE) 
            .map(Shape::getWeight) 
            .sum(); 

int sumOfWeight  
    = shapes.parallelStream() 
            .filter(s -> s.getColor() == BLUE) 
            .map(Shape::getWeight) 
            .sum(); 



Aggregation 

•  The sum() example is a special case of reduction 
•  Elements t1, t2, … tn 

•  An associative operator ×  
•  Computes t1 × t2 × … × tn 

•  We can extend the notion of reduction to mutable 
aggregations 
•  Accumulate elements into a List 
•  Concatenate strings into a StringBuffer 
•  Classify elements and group into a Map 

•  Reductions work in parallel as well as sequentially 
•  (As long as your operator is associative) 



Aggregation 

// Accumulate elements into a List 
List<Person> list = people.stream() 
                          .collect(Collectors.toList()); 

 
// Accumulate elements into a TreeSet 
TreeSet<Person> list =  
    people.stream() 
          .collect(toCollection(TreeSet::new)); 

 

// Convert elements to comma-separated list 

String joined =  
    stream.map(Object::toString) 
          .collect(toStringJoiner(", ")) 
          .toString(); 

 

// Find highest-paid employee 
Employee highestPaid =  
    employees.stream() 
             .collect(maxBy(comparing(Employee::getSalary))); 

  



Aggregation 

// Group employees by department 
Map<Department, List<Employee>> byDept = 
    emps.stream() 
        .collect(groupingBy(Employee::getDepartment)); 

 

// Find highest-paid employee by department 
Map<Department, Employee> highestPaidByDept = 
    emps.stream() 
        .collect(groupingBy(Employee::getDepartment, 
                            maxBy(comparing(Employee::getSalary)))); 

 

 
 



So … Why Lambda? 

•  It’s about time!   
•  Java is the lone holdout among mainstream OO languages at 

this point to not have closures 
•  Adding closures to Java is no longer a radical idea 

•  Provide libraries a path to multicore 
•  Parallel-friendly APIs need internal iteration 
•  Internal iteration needs a concise code-as-data mechanism 

•  Empower library developers 
•  More powerful, flexible libraries 
•  Higher degree of cooperation between libraries and client code 

•  Encourage better idioms 
•  Gentle push towards a more functional style of programming 



What’s Next? 

•  There’s plenty more work to do!   
•  Dealing with primitive-reference divide 
•  More parallel libraries 
•  Value types and tuples 
•  Computation on GPUs 
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