DDD at 10

Eric Evans
domainlanguage.com
@ericevansO #dddesign

Domain-Driven Design (DDD)

e Focus on the core domain.

* Explore models in a creative collaboration of
software practitioners and domain
practitioners.

* Speak a ubiquitous language within an
explicitly bounded context.

DDD didn’t start in 2003

... Design by Contract, Bertrand Meyer
Responsibility-Driven Design, Rebecca Wirfs-
Brock, Ward Cunningham, Kent Beck,

Smalltalk, Dave Thomas, Ableson &

Sussman, Grady Booch, Ralph Johnson, Eric Gold,
David Siegel ...

First cycle 2003-2007

Points | had felt | had to make

* Modeling (to be useful) must be linked to
implementation

* Implementation had to be precise and of a
different style than mainstream code.

Would not come across without detailed,
concrete examples = Deep and long on:

* Building Blocks

Points | also made

* Models emerged through iteration and
collaboration with domain experts. (Stated
early and throughout.)

e Certain strategic considerations make success
with modeling possible/impossible. (Late in
the book)

Top questions of this era

What's the difference between an entity and a
value object?

Can an entity refer to a repository?
How do I Repository7
Can | ... Repository ... ?

Repository ... repository ... ?

Distressing Trends

* Generate code from UML diagrams.

 Heavy frameworks that intruded into object
design and made it difficult to express a model
in code, and any OO implementation heavy,
heavy.

* Assumption that | would be in favor of <fill in
heavy, diagram-centric, modelers don't design
approach>

=l
EE=Es

Many Bright Spots

* Jimmy Nilsson wrote a book (2006)

Model, a system of abstractions

* Not UML diagram (helps document or
communicate parts of some types of models)

* Not a layer of the software (helps us make

software that behaves consistently with a
particular model, and, ideally, expresses the
concepts explicitly)

* NOT a comprehensive schema for all data
needed in a system!

Model, a system of abstractions

e Abstraction means leaving stuff out!

Model, a system of abstractions

* Models are not real; Domains are “real”.

* Evenrealism is a distraction in modeling; A
model should allow us to make assertions.

A model might be predictive; A model might
isolate factors leading to decisions.

Bounded Contexts

* An explicitly defined part of a software system
in which a model’s definitions and assertions
strictly apply.

e Typical boundaries: a subsystem, a service
boundary, a set of packages and a set of
tables ... an unusual technology platform

Strategic Design emphasis (2005 -)

No more idealistic
legacy replacement projects please!

Isolate something strategic (core domain)

in a fresh bounded context, and focus!

Typical Question of 2007

 DDD says you must have an O-R mapper and
layered architecture. Correct?

2008-2011

Event Sourcing and CQRS

Event Sourcing

* Greg Young

* No more mutable objects!

e State changes through the accumulation of
Domain Events

Domain Events

* Arepresentation of something that happened
in the domain, or

* Arule-based response to one or more other
domain events.

* New building block pattern (existing ones
sharpened)

CQRS

Udi Dahan

Separate processing new information or
commands from viewing/analyzing the state.

Break the monolith into focused chunks joined
(mostly) by domain events.

Emphasis on bounded contexts.

DDD Architectures for
Volume and Distribution

e Some confusion of definitions.

* Breaking the logjam takes a certain kind of
personality.

e Common Question: Are these things DDD?
— Yes they are.

DDD with Agile (2009 -)

No explicit place for design/
Naive notions of emergent design.

Get your story done!
Keep up the velocity!!
Not fun anymore.

Modeling and design are often the quickest path
to the goal. What is the actual goal?

(Hint: Not a user story.)

Boldly explore the domain and models
of the domain!

We don’t know the future.

Model Exploration . Tellus a story.

Whirlpool " Recuson

e Refocus on hard part.

DRAFT 0.2
Harvest & Document
Cod e Reference Scenarios

¢ Bits of model with rationale
e |eave most ideas behind

Propose a model
Walkthrough states
Walkthrough solutions
Explore language
Make mistakes

e Research
* Contemplation

@ domain language www.domainlanguage.com/processdraft

Bubble Contexts

No more long-term tradeoff.

Intensive modeling in the core domain. Now!

Short-lived bounded contexts with tentacled
anticorruption layers.

Show what modeling and design can do when we
don’t drag along the mundane parts.

Winds Shifting Toward Design

Client-server
Fat client / thin client ... It’s all monolithic
Architectural/technical monoculture

Distribution, concurrency, eventual consistency...
big rewards for small, loosely-coupled modules

big rewards for clear assertions

Open-source let people show their design work.

2011-

Not only SQL

Not only Objects

NoSQL

* Light-weight, fast ways to manage data.

* Alternative modeling paradigms.

Model, a system of abstractions

We now have three or five
viable modeling paradigms.

... complete with implementation
platforms and communities.

Object Oriented

First to explicitly focus on domain modeling

Units of abstraction: classes, methods, references ...

Behavioral aspects of model procedural, encapsulated
in methods

Original building block patterns reflected what we had
learned about how to shape a model that could be
crisply expressed in OO.

Event Sourcing

Sequence of events

Projection to produce object representing
state.

Projected objects typically made of entities
and value-objects

Projection typically computed by objects

Relational

Not the comprehensive normalized schema.
(Abstraction means leaving stuff out.)

A weak form of relational algebra

Set operations

Functional

* Units of abstraction: functions, sequences,
maps ...

* Building blocks? (Values, yes. Entities, altered.
Domain Events ...)

* Event sourcing?

Graphs

* Units of abstraction: Nodes, edges, ...
* Fuzzy, approximate

 Social

Logic / Rules Engines

 Still haven’t seen it. Keep hoping.

Modeling in Other Paradigms

Modeling Implementation
Style Platform

N/

* Yes, the problems we solve are influenced by
the modeling style and platform. Don't kid
yourself.

Domain-Driven Design (DDD)

e Focus on the core domain.

* Explore models in a creative collaboration of
software practitioners and domain
practitioners.

* Speak a ubiquitous language within an
explicitly bounded context.

DDD at 10

Eric Evans
domainlanguage.com
@ericevansO #dddesign

