
©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Enabling Java
in

Latency Sensitive
Environments

Gil Tene, CTO & co-Founder, Azul Systems

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

High level agenda

Intro, jitter vs. JITTER

Java in a low latency application world

The (historical) fundamental problems

What people have done to try to get around them

What if the fundamental problems were eliminated?

What 2013 looks like for Low latency Java developers

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=22.656&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Is “jitter” a proper word for this?

99%‘ile is ~60 usec Max is ~30,000%
higher than “typical”

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

About me: Gil Tene

co-founder, CTO
@Azul Systems

Have been working on
a “think different” GC
approaches since 2002

Created Pauseless & C4
core GC algorithms
(Tene, Wolf)

A Long history building
Virtual & Physical
Machines, Operating
Systems, Enterprise
apps, etc... * working on real-world trash compaction issues, circa 2004

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

About Azul

We make scalable Virtual
Machines

Have built “whatever it takes
to get job done” since 2002

3 generations of custom SMP
Multi-core HW (Vega)

Now Pure software for
commodity x86 (Zing)

Known for Low Latency,
Consistent execution, and
Large data set excellence

Vega

C4

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Java in the low latency world

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Java in a low latency world

Why do people use Java for low latency apps?

Are they crazy?

No. There are good, easy to articulate reasons

Projected lifetime cost

Developer productivity

Time-to-product, Time-to-market, ...

Leverage, ecosystem, ability to hire

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

E.g. Customer answer to:
“Why do you use Java in Algo Trading?”

Strategies have a shelf life

We have to keep developing and deploying new ones

Only one out of N is actually productive

Profitability therefore depends on ability to
successfully deploy new strategies, and on the cost
of doing so

Our developers seem to be able to produce 2x-3x as
much when using a Java environment as they would
with C++ ...

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

So what is the problem?
Is Java Slow?

No

A good programmer will get roughly the same speed
from both Java and C++

A bad programmer won’t get you fast code on either

The 50%‘ile and 90%‘ile are typically excellent...

It’s those pesky occasional stutters and stammers
and stalls that are the problem...

Ever hear of Garbage Collection?

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Java’s achilles heel

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Stop-The-World Garbage Collection:
How bad is it?

Let’s ignore the bad multi-second pauses for now...

Low latency applications regularly experience “small”,
“minor” GC events that range in the 10s of msec

Frequency directly related to allocation rate

In turn, directly related to throughput

So we have great 50%, 90%. Maybe even 99%

But 99.9%, 99.99%, Max, all “suck”

So bad that it affects risk, profitability, service
expectations, etc.

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=22.656&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

STW-GC effects in a low latency application

99%‘ile is ~60 usec Max is ~30,000%
higher than “typical”

One way to deal with Stop-The-World GC

A way to deal with Stop-The-World GC

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Another way to cope: “Creative Language”

“Guarantee a worst case of 5 msec, 99% of the time”

“Mostly” Concurrent, “Mostly” Incremental
Translation: “Will at times exhibit long monolithic stop-
the-world pauses”

“Fairly Consistent”
Translation: “Will sometimes show results well outside
this range”

“Typical pauses in the tens of milliseconds”
Translation: “Some pauses are much longer than tens of
milliseconds”

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

What do actual low latency developers
do about it?

They use “Java” instead of Java

They write “in the Java syntax”

They avoid allocation as much as possible

E.g. They build their own object pools for everything

They write all the code they use (no 3rd party libs)

They train developers for their local discipline

In short: They revert to many of the practices that
hurt productivity. They loose out on much of Java.

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

What do low latency (Java) developers
get for all their effort?

They still see pauses (usually ranging to tens of msec)

But they get fewer (as in less frequent) pauses

And they see fewer people able to do the job

And they have to write EVERYTHING themselves

And they get to debug malloc/free patterns again

...

Some call it “fun”... Others “duct tape engineering”...

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

There is a fundamental problem

Stop-The-World GC mechanisms
are contradictory to the

fundamental requirements of
low latency & low jitter apps

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Sustainable Throughput:
The throughput achieved while
safely maintaining service levels

Unsustainable
Throughout

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

The common GC behavior across ALL
currently shipping (non-Zing) JVMs

ALL use a Monolithic Stop-the-world NewGen
“small” periodic pauses (small as in 10s of msec)
pauses more frequent with higher throughput or allocation rates

Development focus for ALL is on Oldgen collectors
Focus is on trying to address the many-second pause problem
Usually by sweeping it farther and farther the rug
“Mostly X” (e.g. “mostly concurrent”) hides the fact that they refer
only to the OldGen part of the collector
E.g. CMS, G1, Balanced.... all are OldGen-only efforts

ALL use a Fallback to Full Stop-the-world Collection
Used to recover when other mechanisms (inevitably) fail
Also hidden under the term “Mostly”...

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

At Azul, STW-GC was addressed head-on

We decided to focus on the right core problems

Scale & productivity being limited by responsiveness

Even “short” GC pauses are considered a problem

Responsiveness must be unlinked from key metrics:
Transaction Rate, Concurrent users, Data set size, etc.
Heap size, Live Set size, Allocation rate, Mutation rate
Responsiveness must be continually sustainable
Can’t ignore “rare but periodic” events

Eliminate ALL Stop-The-World Fallbacks
Any STW fallback is a real-world failure

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

The Zing “C4” Collector
Continuously Concurrent Compacting Collector

Concurrent, compacting old generation

Concurrent, compacting new generation

No stop-the-world fallback
Always compacts, and always does so concurrently

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Benefits

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

An example of “First day’s run” behavior
E-Commerce application

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

An example of behavior after 4 days of system tuning
Low latency application

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

This is not “just Theory”

jHiccup:
A tool that measures and reports
(as your application is running)

if your JVM is running all the time

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Incontinuities in Java platform execution

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

0" 200" 400" 600" 800" 1000" 1200" 1400" 1600" 1800"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups"by"Time"Interval"

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=1665.024&

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups"by"Percen@le"Distribu@on"

Discontinuities in Java platform execution - Easy To Measure

A telco
App with
a bit of a
“problem”

We call
these

“hiccups”

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Fun with jHiccup

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=1.568&

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=22.656&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Oracle HotSpot (pure newgen) Zing

Low latency trading application

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=1.568&

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=22.656&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Oracle HotSpot (pure newgen) Zing

Low latency trading application

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Low latency - Drawn to scale

Oracle HotSpot (pure newgen) Zing

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=1.568&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=22.656&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

It’s not just for
Low Latency

Just as easy to demonstrate
for human-response-time

apps

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Oracle HotSpot CMS, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=13156.352&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Zing 5, 1GB in an 8GB heap

0"

5"

10"

15"

20"

25"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"

Max=20.384&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Portal Application, slow Ehcache “churn”

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Oracle HotSpot CMS, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=13156.352&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Zing 5, 1GB in an 8GB heap

0"

5"

10"

15"

20"

25"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"

Max=20.384&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Portal Application, slow Ehcache “churn”

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Oracle HotSpot CMS, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=13156.352&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Zing 5, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"Max=20.384&
0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Portal Application - Drawn to scale

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Lets not forget about GC tuning

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Java GC tuning is “hard”…
Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g
 -XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC
 -XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
 -XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
 -XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12
 -XX:LargePageSizeInBytes=256m …

Java –Xms8g –Xmx8g –Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled
-XX:+CMSParallelRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC –Xnoclassgc …

A	
 few	
 GC	
 tuning	
 flags

Source:	
 Word	
 Cloud	
 created	
 by	
 Frank	
 Pavageau	
 in	
 his	
 Devoxx	
 FR	
 2012	
 presentaFon	
 Ftled	
 “Death	
 by	
 Pauses”

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

The complete guide to
Zing GC tuning

java -Xmx40g

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

GC is only the biggest problem...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

JVMs make many tradeoffs
often trading speed vs. outliers

Some speed techniques come at extreme outlier costs

E.g. (“regular”) biased locking

E.g. counted loops optimizations

Deoptimization

Lock deflation

Weak References, Soft References, Finalizers

Time To Safe Point (TTSP)

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Time To Safepoint (TTSP)
Your new #1 enemy

(Once GC itself was taken care of)

Many things in a JVM (still) use a global safepoint
All threads brought to a halt, at a “safe to analuze”
point in code, and then released after work is done.

E.g. GC phase shifts, Deoptimization, Class unloading,
Thread Dumps, Lock Deflation, etc. etc.

A single thread with a long time-to-safepoint path can
cause an effective pause for all other threads

Many code paths in the JVM are long...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Time To Safepoint (TTSP)
the most common examples

Array copies and object clone()

Counted loops

Many other other variants in the runtime...

Measure, Measure, Measure...

Zing has a built-in TTSP profiler

At Azul, I walk around with a 0.5msec stick...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

OS related stuff
(once GC and TTSP are taken care of)

OS related hiccups tend to dominate once GC and TTSP
are removed as issues.

Take scheduling pressure seriously (Duh?)

Hyper-threading (good? bad?)

Swapping (Duh!)

Power management

Transparent Huge Pages (THP).

...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Takeaway: In 2013, “Real” Java is finally
viable for low latency applications

GC is no longer a dominant issue, even for outliers

2-3msec worst case case with “easy” tuning

< 1 msec worst case is very doable

No need to code in special ways any more

You can finally use “real” Java for everything

You can finally 3rd party libraries without worries

You can finally use as much memory as you want

You can finally use regular (good) programmers

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

One-liner Takeaway:

Zing: A cure for the Java hiccups

©2011 Azul Systems, Inc.	
 	
 	
 	
 	
 	

One-liner Takeaway:
Zing: A cure for the Java hiccups

Q & A

jHiccup:
http://www.azulsystems.com/dev_resources/jhiccup

http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com

