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Dart

Web apps should be as good or better than native 
apps

For users

For developers

Sophisticated web apps need not require 
superhuman feats of heroism
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Dart

Constraints

Compile to Javascript on the browser

Familiar to mainstream programmers
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Dart: Language, Platform, 
Tools, Engine(s)

Familiar, unsurprising language 
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class Point {

  var x, y;

  Point(a, b){x =a; y = b;};

  operator +(a) { return new Point(x + a.x, y + a.y);}

}
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Dart: Language, Platform, 
Tools, Engine(s)

There are umpteen frameworks for any given 
purpose on the web. They don’t interoperate very 
well 

Dart provides a solid set of core libraries. The core 
APIs are now stable.
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Dart: Language, Platform, 
Tools, Engine(s)

Language is designed to be toolable 

Dynamic, but structured enough to support 
analysis

Classes

No eval()

Optional types
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class Point {

  var x, y;

  Point(a, b){x =a; y = b;};

  operator +(a) {return new Point(x + a.x, y + a.y);}

}
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class Point {

  var x, y;

  Point(this.x, this.y);

  operator +(a) =>

      new Point(x + a.x, y + a.y);

}
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class Point {

  int x, y;

  Point(this.x, this.y);

  Point operator +(Point a) =>

new Point(x + a.x, y + a.y);

}
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Dart: Language, Platform, 
Tools, Engine(s)

VM now at roughly 2x V8 performance. Fastest 
dynamic language implementation ever 

Compilation to Javascript roughly on par with 
handwritten JS
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Dart Execution
Dart 

JavaScript Dart VM

dart2js
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Overview

Dart: Civilized Programming for the Web

Class based, Purely Object Oriented, Optionally 
Typed, Mixin-based Inheritance, Message-passing 
Concurrency, Mirror-based Reflection
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Everything is an Object

As in Smalltalk, Ruby, Scala and others

No autoboxing, no hidden coercions
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Segue: Coercions

function (x){return x;}(false) ? print(“true”): print(“false”);
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Segue: Coercions

false is true: 

function (x){return x;}(false) ? print(“true”): print(“false”);
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Segue: Coercions

false is true: 

function (x){return x;}(false) ? print(“true”): print(“false”);) 

autobox
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Segue: Coercions

false is true: 

function (x){return x;}(false) ? print(“true”): print(“false”);

coerce object to bool
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Segue: Coercions

false is true: 

function (x){return x;}(false) ? print(“true”): print(“false”);

Ignorance is Strength:

All this was known since PL/1 (1960s)

Those who ignore history are condemned to 
repeat it (cf. Javascript, or worse, PHP) 
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Representation 
Independence

Fields are never accessed directly in Dart

Instead, accessors (getters and setters) are created 
and used implicitly

x.a means invoke x’s getter method

         get a { ... }

x.a = v  means invoke x’s setter method

                       set a(x) { .... }
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Representation 
Independence

Now, if I decide to change the representation of x 
objects to compute a instead, I can declare getters and 
setters as needed without breaking my clients. Even 
my subclasses can’t tell.
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Optional Types

Types Annotations

Are syntactically optional

Have no semantic effect 
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Types don’t effect Runtime

class LazyFields {

   var _x;

   get x =>  _x == null ? _x = complicated(): _x;

}
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Types don’t effect Runtime

class LazyFields {

   int _x;

   int get x =>  _x == null ? _x = complicated(): _x;

}
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Types are Interfaces
Dart has no interface declarations, but classes induce 
implicit interfaces that are reified.

abstract class Pair {get first; get second;}

class ArrayPair implements Pair {

   var rep = [];

   ArrayPair(a, b) { rep[0] =  a; rep[1] = b;} 

   get first => rep[0]; get second => rep[1];

} 
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Mirrors
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Classic OO Reflection

o.getClass().getMethods();
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Mirrors are Different

Mirrors are objects that reflect other objects.

reflect(o).type.methods;

If you don’t have the right mirror, you cannot reflect, 
addressing difficulties in deployment, distribution, 
security
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Mirrors are Different

reflect(o).type.methods;
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Mirrors are Different

reflect(o).type.methods;

InstanceMirror
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Mirrors are Different

reflect(o).type.methods;

ClassMirror
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Mirrors are Different

reflect(o).type.methods;

Map<Symbol, MethodMirror>
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Beyond Introspection

Mirror builders for creating new/modified code

Stack mirrors and Activation mirrors to support 
debugging
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Caveats
Web apps often optimized for size by eliminating 
symbols (minification) and unused code (tree shaking)

Reflecting on code that has been optimized away is not 
possible

Options:

Do not optimize? Ouch.

Provide mechanism to selectively preserve reflective 
information
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Caveats

Web apps often optimized for size by eliminating 
symbols (minification) and unused code (tree shaking)

Reflecting on code that has been minifed is possible

Using constant symbols, we can ensure that 
symbols correspond to minified names

Mapping back to real names entails space overhead
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A History of Mirrors

Mirror-based Reflection

Originated in Self

 Used in Strongtalk, Java (JDI & APT), Newspeak, 
Scala

Now in Dart

Caveat Emptor: WIP! Coming to dart2js soon!
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More on Mirrors
Blog:

 gbracha.blogspot.com/2010/03/through-looking-glass-
darkly.html

OOPSLA 2004 paper: bracha.org/mirrors.pdf

2010 Video: 

www.hpi.uni-potsdam.de/hirschfeld/events/past/media/
100105_Bracha_2010_LinguisticReflectionViaMirrors_HPI.mp4
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noSuchMethod()

class Proxy {

   final mirror;

   Proxy(forwardee): mirror = reflect(forwardee);

   noSuchMethod(Invocation i) => mirror.delegate(i);

}
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Libraries
LIbraries are Dart’s modularity mechanism

Libraries group classes, functions and variables in a top 
level scope

Libraries are units of encapsulation, but not security

Privacy is per library. Private members are prefixed 
with _

 So far, libraries are NOT objects :-(

Familiar import mechanism
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Dart

Class based, Purely Object Oriented, Optionally 
Typed, Mixin-based Inheritance, Mirror-based 
Reflection, Message-passing Concurrency

Supports Software Engineering, Good Performance, 
Toolability

Status: Open Source (Apache), Open Development
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http://www.dartlang.org
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