
The State of D art
Gilad Bracha
Google

1Wednesday, April 24, 13

The State of Dart
Gilad Bracha
Google

2Wednesday, April 24, 13

Dart

Web apps should be as good or better than native
apps

For users

For developers

Sophisticated web apps need not require
superhuman feats of heroism

3Wednesday, April 24, 13

Dart

Constraints

Compile to Javascript on the browser

Familiar to mainstream programmers

4Wednesday, April 24, 13

Dart: Language, Platform,
Tools, Engine(s)

Familiar, unsurprising language

5Wednesday, April 24, 13

class Point {

 var x, y;

 Point(a, b){x =a; y = b;};

 operator +(a) { return new Point(x + a.x, y + a.y);}

}

6Wednesday, April 24, 13

Dart: Language, Platform,
Tools, Engine(s)

There are umpteen frameworks for any given
purpose on the web. They don’t interoperate very
well

Dart provides a solid set of core libraries. The core
APIs are now stable.

7Wednesday, April 24, 13

Dart: Language, Platform,
Tools, Engine(s)

Language is designed to be toolable

Dynamic, but structured enough to support
analysis

Classes

No eval()

Optional types

8Wednesday, April 24, 13

class Point {

 var x, y;

 Point(a, b){x =a; y = b;};

 operator +(a) {return new Point(x + a.x, y + a.y);}

}

9Wednesday, April 24, 13

class Point {

 var x, y;

 Point(this.x, this.y);

 operator +(a) =>

 new Point(x + a.x, y + a.y);

}

10Wednesday, April 24, 13

class Point {

 int x, y;

 Point(this.x, this.y);

 Point operator +(Point a) =>

new Point(x + a.x, y + a.y);

}

11Wednesday, April 24, 13

Dart: Language, Platform,
Tools, Engine(s)

VM now at roughly 2x V8 performance. Fastest
dynamic language implementation ever

Compilation to Javascript roughly on par with
handwritten JS

12Wednesday, April 24, 13

Dart Execution
Dart

JavaScript Dart VM

dart2js

13Wednesday, April 24, 13

Overview

Dart: Civilized Programming for the Web

Class based, Purely Object Oriented, Optionally
Typed, Mixin-based Inheritance, Message-passing
Concurrency, Mirror-based Reflection

14Wednesday, April 24, 13

Everything is an Object

As in Smalltalk, Ruby, Scala and others

No autoboxing, no hidden coercions

15Wednesday, April 24, 13

Segue: Coercions

function (x){return x;}(false) ? print(“true”): print(“false”);

16Wednesday, April 24, 13

Segue: Coercions

false is true:

function (x){return x;}(false) ? print(“true”): print(“false”);

17Wednesday, April 24, 13

Segue: Coercions

false is true:

function (x){return x;}(false) ? print(“true”): print(“false”);)

autobox

18Wednesday, April 24, 13

Segue: Coercions

false is true:

function (x){return x;}(false) ? print(“true”): print(“false”);

coerce object to bool

19Wednesday, April 24, 13

Segue: Coercions

false is true:

function (x){return x;}(false) ? print(“true”): print(“false”);

Ignorance is Strength:

All this was known since PL/1 (1960s)

Those who ignore history are condemned to
repeat it (cf. Javascript, or worse, PHP)

20Wednesday, April 24, 13

Representation
Independence

Fields are never accessed directly in Dart

Instead, accessors (getters and setters) are created
and used implicitly

x.a means invoke x’s getter method

 get a { ... }

x.a = v means invoke x’s setter method

 set a(x) { }

21Wednesday, April 24, 13

Representation
Independence

Now, if I decide to change the representation of x
objects to compute a instead, I can declare getters and
setters as needed without breaking my clients. Even
my subclasses can’t tell.

22Wednesday, April 24, 13

Optional Types

Types Annotations

Are syntactically optional

Have no semantic effect

23Wednesday, April 24, 13

Types don’t effect Runtime

class LazyFields {

 var _x;

 get x => _x == null ? _x = complicated(): _x;

}

24Wednesday, April 24, 13

Types don’t effect Runtime

class LazyFields {

 int _x;

 int get x => _x == null ? _x = complicated(): _x;

}

25Wednesday, April 24, 13

Types are Interfaces
Dart has no interface declarations, but classes induce
implicit interfaces that are reified.

abstract class Pair {get first; get second;}

class ArrayPair implements Pair {

 var rep = [];

 ArrayPair(a, b) { rep[0] = a; rep[1] = b;}

 get first => rep[0]; get second => rep[1];

}

26Wednesday, April 24, 13

Mirrors

27Wednesday, April 24, 13

Classic OO Reflection

o.getClass().getMethods();

28Wednesday, April 24, 13

Mirrors are Different

Mirrors are objects that reflect other objects.

reflect(o).type.methods;

If you don’t have the right mirror, you cannot reflect,
addressing difficulties in deployment, distribution,
security

29Wednesday, April 24, 13

Mirrors are Different

reflect(o).type.methods;

30Wednesday, April 24, 13

Mirrors are Different

reflect(o).type.methods;

InstanceMirror

31Wednesday, April 24, 13

Mirrors are Different

reflect(o).type.methods;

ClassMirror

32Wednesday, April 24, 13

Mirrors are Different

reflect(o).type.methods;

Map<Symbol, MethodMirror>

33Wednesday, April 24, 13

Beyond Introspection

Mirror builders for creating new/modified code

Stack mirrors and Activation mirrors to support
debugging

34Wednesday, April 24, 13

Caveats
Web apps often optimized for size by eliminating
symbols (minification) and unused code (tree shaking)

Reflecting on code that has been optimized away is not
possible

Options:

Do not optimize? Ouch.

Provide mechanism to selectively preserve reflective
information

35Wednesday, April 24, 13

Caveats

Web apps often optimized for size by eliminating
symbols (minification) and unused code (tree shaking)

Reflecting on code that has been minifed is possible

Using constant symbols, we can ensure that
symbols correspond to minified names

Mapping back to real names entails space overhead

36Wednesday, April 24, 13

A History of Mirrors

Mirror-based Reflection

Originated in Self

 Used in Strongtalk, Java (JDI & APT), Newspeak,
Scala

Now in Dart

Caveat Emptor: WIP! Coming to dart2js soon!

37Wednesday, April 24, 13

More on Mirrors
Blog:

 gbracha.blogspot.com/2010/03/through-looking-glass-
darkly.html

OOPSLA 2004 paper: bracha.org/mirrors.pdf

2010 Video:

www.hpi.uni-potsdam.de/hirschfeld/events/past/media/
100105_Bracha_2010_LinguisticReflectionViaMirrors_HPI.mp4

38Wednesday, April 24, 13

http://gbracha.blogspot.com/2010/03/through-looking-glass-darkly.html
http://gbracha.blogspot.com/2010/03/through-looking-glass-darkly.html
http://gbracha.blogspot.com/2010/03/through-looking-glass-darkly.html
http://gbracha.blogspot.com/2010/03/through-looking-glass-darkly.html
http://gbracha.blogspot.com/2010/03/through-looking-glass-darkly.html
http://gbracha.blogspot.com/2010/03/through-looking-glass-darkly.html
http://bracha.org/mirrors.pdf
http://bracha.org/mirrors.pdf
http://www.hpi.uni-potsdam.de/hirschfeld/events/past/media/100105_Bracha_2010_LinguisticReflectionViaMirrors_HPI.mp4
http://www.hpi.uni-potsdam.de/hirschfeld/events/past/media/100105_Bracha_2010_LinguisticReflectionViaMirrors_HPI.mp4
http://www.hpi.uni-potsdam.de/hirschfeld/events/past/media/100105_Bracha_2010_LinguisticReflectionViaMirrors_HPI.mp4
http://www.hpi.uni-potsdam.de/hirschfeld/events/past/media/100105_Bracha_2010_LinguisticReflectionViaMirrors_HPI.mp4

noSuchMethod()

class Proxy {

 final mirror;

 Proxy(forwardee): mirror = reflect(forwardee);

 noSuchMethod(Invocation i) => mirror.delegate(i);

}

39Wednesday, April 24, 13

Libraries
LIbraries are Dart’s modularity mechanism

Libraries group classes, functions and variables in a top
level scope

Libraries are units of encapsulation, but not security

Privacy is per library. Private members are prefixed
with _

 So far, libraries are NOT objects :-(

Familiar import mechanism

40Wednesday, April 24, 13

Dart

Class based, Purely Object Oriented, Optionally
Typed, Mixin-based Inheritance, Mirror-based
Reflection, Message-passing Concurrency

Supports Software Engineering, Good Performance,
Toolability

Status: Open Source (Apache), Open Development

41Wednesday, April 24, 13

http://www.dartlang.org

42Wednesday, April 24, 13

