N

The State of D art
Gilad Bracha
Google

N

The State of Dart
Gilad Bracha
Google

)

Dart

Web apps shouldbe as good or better than native
apPS

® FOr USers

x [Or developers

x Sophisticated web apps need not require
superhuman feats of heroism

Wednesday, April 24, 13

)

Dart

Constraints
x Complle to Javascript on the browser

x Familiar to mainstream programmers

Wednesday, April 24, 13 4

Dart: Language, Platform,
Tools, Engine(s)

Familiar, unsurprising language

class Point {
var x, y;
Point(a, b){x =a: y = b:};
operator +(a) { return new Point(x + a.x, y + a.y);}

j

Wednesday, April 24, 13

Dart: Language, Platform,
Tools, Engine(s)

x [here are umpteen frameworks for any given
purpose on the web. They don't interoperate very
well

x Dart provides a solid set of core libraries. The core
APls are now stable.

Wednesday, April 24, 13

Dart: Language, Platform,
Tools, Engine(s)

® | anguage Is designed 1o be toolable

x Dynamic, but structured enough to support
analysis

x (Glasses

= No eval()

x Optional types

class Point {
var x, y;
Point(a, b){x =a: y = b:};
operator +(a) {return new Point(x + a.x, y + a.y);}

j

Wednesday, April 24, 13

class Point {
var x, y;
Point(this.x, this.y);
operator +(a) =>

new Point(x + a.x, y + a.y);

Wednesday, April 24, 13

class Point {
Nt X, V;
Point(this.x, this.y);
Point operator +(Point a) =>

new Point(x + a.x, y + a.y);

Wednesday, April 24, 13

Dart: Language, Platform,
Tools, Engine(s)

x VM now at roughly: 2x-V8 performance. Fastest
dynamic language: implementation ever

x Compilation to Javascript roughly on par with
handwritten JS

Wednesday, April 24, 13

Dart Execution

Overview

x Dart: Civilized Programming: for. the Web

x (Class based, Purely: ©Object Oriented, Optionally
1lyped, Mixin-lbased: Inheritance, Message-passing
Concurrency, Mirror-based Reflection

Wednesday, April 24, 13

Everything Is an Object

x As In Smalltalk; Ruby, Scala and others

x NO autoboxing, no:hidden coercions

Segue: Goercions

function (x)ireturn x;}(false) 2 print(“true”): print(*false”);

Segue: Goercions

x false IS true:

function (x)ireturn x;}(false) 2 print(“true”): print(*false”);

Wednesday, April 24, 13

Segue: Goercions

x false is true: autobox

e eIeC e

function (x)ireturn x;(false) 2 print(“true”): print(*false”);)

Wednesday, April 24, 13

Segue: Goercions

» false IS true:

coerce object 1o bool

< >

function (x){return: x;}(false): 2 prant(“true”): print(“false”);

Wednesday, April 24, 13

Segue: Goercions

x false iIs true:
function (X){return x;}(false) 2 print(“true”): print(“false”);
x |gnorance Is Strength:

= All this was known since PL/1 (1960s)

x [hose who ignore history are condemned to
repeat It (ct. Javascript, or worse, PHP)

Wednesday, April 24, 13

Representation
INndependence

x [elds are never accessed airectly in Dart

x |nstead, accessors (getters and setters) are created
and used implicitly

x X.a means invoke x's getter method
getai..}
® X.a =V means invoke x's setter method

setalx){....}

Wednesday, April 24, 13

Representation
INndependence

Now, It | decide to change the representation of x
objects to compute a instead, | can declare getters and
setters as needed without breaking my clients. Even

My subclasses can't tell.

Wednesday, April 24, 13

Optional Types

Types Annotations
x Are syntactically optional

® Have no semantic effect

Wednesday, April 24, 13

lypes don't effect Runtime

class Lazyrields {

var Xx;

get x => x==null? x =complicated(): _x;

}

lypes don't effect Runtime

class Lazyrields {

Nt X;

ntget x => x==null? X =complicated(): _X;

}

lypes are Interfaces

Dart has no interface declarations, but classes induce
implicit interfaces that are reified.

abstract class Pair {get first; get second;}
class ArrayPair implements Pair {
var rep = {|;
ArrayPair(a; b) { repl0] = a: rep[1] = b:}
get first => rep|0]; get second => rep|1];

Wednesday, April 24, 13

Mirrors

Wednesday, April 24, 13

Classic OO Reflection

0.getClass().getiMethods();

Mirrors are Difterent

Mirrors are objects that retlect other: objects.
reflect(o).type.methods;

If you don’t have the right mirror, you cannot reflect,
addressing difficulties: in-deployment, distribution,
security

Wednesday, April 24, 13

Mirrors are Difterent

reflect(o).type.methods;

Mirrors are Difterent

InstanceMirror

reflect(o).type.methods;

Mirrors are Difterent

ClassMirror

reflect(o).type.methods;

Mirrors are Difterent

Map<Symbol, MethoadMirror=

reflect(o).type.methods;

Beyond Introspection

x Mirror builders for creating new/modified code

x Stack mirrors and-Activation mirrors to support
debugging

Wednesday, April 24, 13

Caveats

x \Web apps often optimized for size by eliminating
symbols (minification) and unused code (tree shaking)

x Reflecting on code that has been optimized away Is not
nossible

x Options:
x Donoteptimize 2 Ouch:

® Provide mechanism to selectively preserve reflective
information

Wednesday, April 24, 13

Caveats

x \\eb apps often optimized: for size by eliminating
symbols (minification) and tunused code (tree shaking)

x Reflecting on code that has been minifed is possible

x Using constant symbols, we can ensure that
Symbols correspond to minified names

x Mapping back to real names entails space overhead

Wednesday, April 24, 13

A History of Mirrors

= Mirror-based Retlection
x QOriginated in Self

x Used in Strongtalk; dava (JDI& APT), Newspeak,
Scala

x Now In Dart

x Caveat Emptor: WIP! Goming to dart2js soon!

Wednesday, April 24, 13

Viore on Mirrors

x Blog:

» gbracha.blogspot.com/2010/03/through-looking-glass-
darkly.html

x OOPSLA 2004 paper: bracha.org/mirrors.pdf
x 2010 Video:

x WWW.hpLUni-potsdam.de/hirschield/events/past/media/
100105 Bracha 2010 LinguisticReflectionViaMirrors HPl.mp4

Wednesday, April 24, 13

http://gbracha.blogspot.com/2010/03/through-looking-glass-darkly.html
http://gbracha.blogspot.com/2010/03/through-looking-glass-darkly.html
http://gbracha.blogspot.com/2010/03/through-looking-glass-darkly.html
http://gbracha.blogspot.com/2010/03/through-looking-glass-darkly.html
http://gbracha.blogspot.com/2010/03/through-looking-glass-darkly.html
http://gbracha.blogspot.com/2010/03/through-looking-glass-darkly.html
http://bracha.org/mirrors.pdf
http://bracha.org/mirrors.pdf
http://www.hpi.uni-potsdam.de/hirschfeld/events/past/media/100105_Bracha_2010_LinguisticReflectionViaMirrors_HPI.mp4
http://www.hpi.uni-potsdam.de/hirschfeld/events/past/media/100105_Bracha_2010_LinguisticReflectionViaMirrors_HPI.mp4
http://www.hpi.uni-potsdam.de/hirschfeld/events/past/media/100105_Bracha_2010_LinguisticReflectionViaMirrors_HPI.mp4
http://www.hpi.uni-potsdam.de/hirschfeld/events/past/media/100105_Bracha_2010_LinguisticReflectionViaMirrors_HPI.mp4

noSuchMethod()

class Proxy. {
final mirror;
Proxy(forwardee): mirror = reflect(forwardee);

noSuchMethod(lnvocation 1) => mirror.delegate(i);

Wednesday, April 24, 13

| Ibraries

x | [oraries are Dart’s modularity:mechanism

x | ibraries group classes; functions and variables in a top
level scope

x | ibraries are units of encapsulation, out not security

x Privacy is per library. Private members are prefixed
with =

x SO far, libraries are NOT objects :-(

x Familiar import mechanism

Wednesday, April 24, 13

Dart

x (Class based, Purely: ©Object Oriented, Optionally
Typed, Mixin-based Inheritance, Mirror-based

Reflection, Message-passing Concurrency

® Supports Software Engineering, Good Performance,
Toolability

x Status: Open sSource (Apache), Open Development

Wednesday, April 24, 13

x Nttp://www.dartlang.org

Wednesday, April 24, 13

