
Martin Thompson - @mjpt777

© Copyright - Real Logic Limited 2013

Top 10

Performance Folklore

“… as I’d like to show Galileo our world, I

must show him something with a great deal

of shame. If we look away from the science

and look at the world around us, we find out

something rather pitiful: that the

environment that we live in is so actively,

intensely unscientific.”

– Richard Feynman

“How would you design an experiment

to answer that?”

– Melville Arthur Feynman

Folklore

• A body of widely held but false

or unsubstantiated beliefs

Technology Performance

Folklore

10

“Disk is random access”

Zone Bit Recording (ZBR)

Zone Bit Recording (ZBR)

IO = Cmd + Seek + Rotation + Transfer

IO = Cmd + Seek + Rotation + Transfer

Random 4K Block

~6ms = 0.1 + 3 + 3 + 0.02

IO = Cmd + Seek + Rotation + Transfer

Random 4K Block

~6ms = 0.1 + 3 + 3 + 0.02

~664KB/s vs. ~200MB/s !!!

9

“CPUs are not getting any

faster”

“CPUs are not getting any faster?”

Text tokenization of

“Alice in Wonderland”

Micro Architecture Model Ops/sec

Core P8600 @ 2.40GHz 1434

Nehalem E5620 @ 2.40GHz 1768

Sandy Bridge i7-2720QM @ 2.20GHz 2674

“CPUs are not getting any faster?”

Text tokenization of

“Alice in Wonderland”

Nehalem 2.8GHz

==============

$ perf stat <program>

 6975.000345 task-clock # 1.166 CPUs utilized

 2,065 context-switches # 0.296 K/sec

 126 CPU-migrations # 0.018 K/sec

 14,348 page-faults # 0.002 M/sec

 22,952,576,506 cycles # 3.291 GHz

 7,035,973,150 stalled-cycles-frontend # 30.65% frontend cycles idle

 8,778,857,971 stalled-cycles-backend # 38.25% backend cycles idle

 35,420,228,726 instructions # 1.54 insns per cycle

 # 0.25 stalled cycles per insn

 6,793,566,368 branches # 973.988 M/sec

 285,888,040 branch-misses # 4.21% of all branches

 5.981211788 seconds time elapsed

Nehalem 2.8GHz

==============

$ perf stat <program>

 6975.000345 task-clock # 1.166 CPUs utilized

 2,065 context-switches # 0.296 K/sec

 126 CPU-migrations # 0.018 K/sec

 14,348 page-faults # 0.002 M/sec

 22,952,576,506 cycles # 3.291 GHz

 7,035,973,150 stalled-cycles-frontend # 30.65% frontend cycles idle

 8,778,857,971 stalled-cycles-backend # 38.25% backend cycles idle

 35,420,228,726 instructions # 1.54 insns per cycle

 # 0.25 stalled cycles per insn

 6,793,566,368 branches # 973.988 M/sec

 285,888,040 branch-misses # 4.21% of all branches

 5.981211788 seconds time elapsed 5.981211788

Nehalem 2.8GHz

==============

$ perf stat <program>

 6975.000345 task-clock # 1.166 CPUs utilized

 2,065 context-switches # 0.296 K/sec

 126 CPU-migrations # 0.018 K/sec

 14,348 page-faults # 0.002 M/sec

 22,952,576,506 cycles # 3.291 GHz

 7,035,973,150 stalled-cycles-frontend # 30.65% frontend cycles idle

 8,778,857,971 stalled-cycles-backend # 38.25% backend cycles idle

 35,420,228,726 instructions # 1.54 insns per cycle

 # 0.25 stalled cycles per insn

 6,793,566,368 branches # 973.988 M/sec

 285,888,040 branch-misses # 4.21% of all branches

 5.981211788 seconds time elapsed

30.65%

38.25%

1.54

Sandy Bridge 2.4GHz

===================

$ perf stat <program>

 5888.817958 task-clock # 1.180 CPUs utilized

 2,091 context-switches # 0.355 K/sec

 211 CPU-migrations # 0.036 K/sec

 14,148 page-faults # 0.002 M/sec

 19,026,773,297 cycles # 3.231 GHz

 5,117,688,998 stalled-cycles-frontend # 26.90% frontend cycles idle

 4,006,936,100 stalled-cycles-backend # 21.06% backend cycles idle

 35,396,514,536 instructions # 1.86 insns per cycle

 # 0.14 stalled cycles per insn

 6,793,131,675 branches # 1153.565 M/sec

 186,362,065 branch-misses # 2.74% of all branches

 4.988868680 seconds time elapsed

Sandy Bridge 2.4GHz

===================

$ perf stat <program>

 5888.817958 task-clock # 1.180 CPUs utilized

 2,091 context-switches # 0.355 K/sec

 211 CPU-migrations # 0.036 K/sec

 14,148 page-faults # 0.002 M/sec

 19,026,773,297 cycles # 3.231 GHz

 5,117,688,998 stalled-cycles-frontend # 26.90% frontend cycles idle

 4,006,936,100 stalled-cycles-backend # 21.06% backend cycles idle

 35,396,514,536 instructions # 1.86 insns per cycle

 # 0.14 stalled cycles per insn

 6,793,131,675 branches # 1153.565 M/sec

 186,362,065 branch-misses # 2.74% of all branches

 4.988868680 seconds time elapsed 4.988868680

Sandy Bridge 2.4GHz

===================

$ perf stat <program>

 5888.817958 task-clock # 1.180 CPUs utilized

 2,091 context-switches # 0.355 K/sec

 211 CPU-migrations # 0.036 K/sec

 14,148 page-faults # 0.002 M/sec

 19,026,773,297 cycles # 3.231 GHz

 5,117,688,998 stalled-cycles-frontend # 26.90% frontend cycles idle

 4,006,936,100 stalled-cycles-backend # 21.06% backend cycles idle

 35,396,514,536 instructions # 1.86 insns per cycle

 # 0.14 stalled cycles per insn

 6,793,131,675 branches # 1153.565 M/sec

 186,362,065 branch-misses # 2.74% of all branches

 4.988868680 seconds time elapsed

26.90%

21.06%

1.86

8

“Memory is random access”

Temporal

Temporal Spatial

Temporal Spatial

Pattern

L1D L2 L3 Memory

Sequential 3 clocks 11 clocks 14 clocks 6.0 ns

In-Page Random 3 clocks 11 clocks 18 clocks 22.0 ns

Full Random 3 clocks 11 clocks 38 clocks 65.8 ns

Latencies measured by SiSoftware

Intel i7-3960X (Sandy Bridge E)

L1D L2 L3 Memory

Sequential 3 clocks 11 clocks 14 clocks 6.0 ns

In-Page Random 3 clocks 11 clocks 18 clocks 22.0 ns

Full Random 3 clocks 11 clocks 38 clocks 65.8 ns

Latencies measured by SiSoftware

Intel i7-3960X (Sandy Bridge E)

Plus another 40ns for QPI hop!!!

Memory Access Patterns

Really Matter!!!

7

“Mac’s are a good development

platform”

6

“Garbage Collection takes away

the worry of memory

management”

$ java -XX:+UnlockDiagnosticVMOptions \

 -XX:+PrintFlagsFinal -version \

 | wc -l

$ java -XX:+UnlockDiagnosticVMOptions \

 -XX:+PrintFlagsFinal -version \

 | wc –l

...

 770

At least 272 are GC related!!!

$ java -XX:+UnlockDiagnosticVMOptions \

 -XX:+PrintFlagsFinal -version \

 | wc –l

...

 770

G1GC

G1GC

Native Heap – Beyond the city walls...

5

“Functional Programming solves

the concurrency problem”

“The runtime can optimize immutable

values...”

– FP Fanboi

Persistent Data Structures

Hash Array Mapped Trie (Bagwell)

Market

HAMT Ref

*

HAMT

Venue
*

HAMT

Instrument
*

HAMT

Order
*

Market

HAMT Ref

*

HAMT

Venue
*

HAMT

Instrument
*

HAMT

Order
*

<< CAS Failure? >>

Market

HAMT Ref

*

HAMT

Venue
*

HAMT

Instrument
*

HAMT

Order
*

M
o

d
e
l

D
e
p

th

Threads

<< CAS Failure? >>

10 X
Throughput

10 X
Throughput

Garbage

Collection

&&

4

“Domain Models do not

perform...”

“Object models do not perform...”

– Translation

“Indirection is bad...”

– Distillation

Cohesion

=>

Cache Friendly

Feature Envy

=>

Cache Misses

Clean Code

=>

Good Performance

Specialised Indices

for access paths

Choose your data structures well

3

“Go parallel to scale...”

Map Reduce

Fork Join

Parallel Collections

Locks

Work Pools

Single Threaded Rocks!

... apply messaging passing ...

... then consider pipelining ...

Go parallel only

when you really need too!

2

“Logging is cheap...”

Should a logger be able to generate

data faster than a disk can write?

Should more threads be able to

generate more data to write?

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

1 2 3 4 5 6 7 8

T
im

e
 (

n
a
n

o
s
e
c
o

n
d

s
)

Average Log Event Duration

Should logging be synchronous?

Should we really be logging Strings?

Should logging need guards?

How reliable should logging be?

Logging is often a poor substitute

for experience with a debugger

1

“Parsing code is highly

optimised...”

XML

JSON

HTTP
FIX

SOAP

How much text is not

UTF-8 or ASCII?

We need primitive support for

dealing with bytes and chars

What’s horrible in the JDK when

parsing?

“Where do I start?”

Performance

Testing

Questions?

Blog: http://mechanical-sympathy.blogspot.com/

Twitter: @mjpt777

“Any intelligent fool can make things bigger,
more complex, and more violent.

It takes a touch of genius, and a lot of courage,
to move in the opposite direction.”

- Albert Einstein

http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/

