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And a plan to stop it



Agenda

• Common sources of complexity in data systems
• Design for a fundamentally better data system



What is a data system?

A system that manages the storage and 
querying of data
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What is a data system?

A system that manages the storage and 
querying of data with a lifetime measured in 
years encompassing every version of the 
application to ever exist, every hardware 
failure, and every human mistake ever 
made



Common sources of complexity

Lack of human fault-tolerance

Schemas done wrong

Conflation of data and queries 



Lack of human fault-tolerance



Human fault-tolerance
• Bugs will be deployed to production over the lifetime of a data system 
• Operational mistakes will be made
• Humans are part of the overall system, just like your hard disks, CPUs, 
memory, and software

• Must design for human error like you’d design for any other fault



Human fault-tolerance
Examples of human error
• Accidentally delete data from database
• Deploy a bug that increments counters by two instead of by one
• Accidental DOS on important internal service



The worst consequence is 
data loss or data corruption



As long as an error doesn’t 
lose or corrupt good data, 

you can fix what went wrong 



Mutability
• The U and D in CRUD
• A mutable system updates the current state of the world
• Mutable systems inherently lack human fault-tolerance
• Easy to corrupt or lose data



Immutability
• An immutable system captures a historical record of events
• Each event happens at a particular time and is always true



Capturing change with mutable data 
model

Person Location

Sally Philadelphia

Bob Chicago

Person Location

Sally New York

Bob Chicago

Sally moves to New York



Capturing change with immutable 
data model

Person Location Time

Sally Philadelphia 1318358351

Bob Chicago 1327928370

Person Location Time

Sally Philadelphia 1318358351

Bob Chicago 1327928370

Sally New York 1338469380

Sally moves to New York



Immutability greatly restricts the 
range of errors that can cause 

data loss or data corruption



Vastly more human fault-tolerant



Immutability
Other benefits
• Fundamentally simpler
• CR instead of CRUD
• Only write operation is appending new units of data
• Easy to implement on top of a distributed filesystem

• File = list of data records
• Append = Add a new file into a directory



Immutability

Please watch Rich Hickey’s talks to learn more 
about the enormous benefits of immutability 



Conflation of data and queries 



Conflation of data and queries
Normalization vs. denormalization

ID Name Location ID

1 Sally 3

2 George 1

3 Bob 3

Location ID City State Population

1 New York NY 8.2M

2 San Diego CA 1.3M

3 Chicago IL 2.7M

Normalized schema



Join is too expensive, so 
denormalize...



ID Name Location ID City State

1 Sally 3 Chicago IL

2 George 1 New York NY

3 Bob 3 Chicago IL

Location ID City State Population

1 New York NY 8.2M

2 San Diego CA 1.3M

3 Chicago IL 2.7M

Denormalized schema



Obviously, you prefer all data to be 
fully normalized



But you are forced to denormalize 
for performance



Because the way data is modeled, 
stored, and queried is complected



We will come back to how to build 
data systems in which these are 

disassociated



Schemas done wrong



Schemas have a bad rap



Schemas
• Hard to change
• Get in the way
• Add development overhead
• Requires annoying configuration



I know! Use a 
schemaless database!



This is an overreaction



Confuses the poor implementation 
of schemas with the value that 

schemas provide



What is a schema exactly?



function(data unit)



That says whether this data is valid 
or not



This is useful



Value of schemas
• Structural integrity
• Guarantees on what can and can’t be stored
• Prevents corruption



Otherwise you’ll detect corruption 
issues at read-time



Potentially long after the corruption 
happened



With little insight into the 
circumstances of the corruption



Much better to get an exception 
where the mistake is made, 

before it corrupts the database



Saves enormous amounts of time



Why are schemas considered 
painful?
• Changing the schema is hard (e.g., adding a column to a table)
• Schema is overly restrictive (e.g., cannot do nested objects)
• Require translation layers (e.g. ORM)
• Requires more typing (development overhead)



None of these are fundamentally 
linked with function(data unit)



These are problems in the 
implementation of schemas, not in 

schemas themselves



Ideal schema tool
• Data is represented as maps
• Schema tool is a library that helps construct the schema function:

• Concisely specify required fields and types
• Insert custom validation logic for fields (e.g. ages are between 0 and 200)

• Built-in support for evolving the schema over time
• Fast and space-efficient serialization/deserialization
• Cross-language this is easy to use and gets out of your way

i use apache thrift, but it lacks the custom validation logic

i think it could be done better with a clojure-like data as maps approach

given that parameters of a data system: long-lived, ever changing, with mistakes being made, the 
amount of work it takes to make a schema (not that much) is absolutely worth it



Let’s get provocative



The relational database will 
be a footnote in history



Not because of SQL, restrictive 
schemas, or scalability issues



But because of fundamental 
flaws in the RDBMS approach 

to managing data



Mutability



Conflating the storage of data 
with how it is queried



“NewSQL” is misguided



Let’s use our ability to cheaply 
store massive amounts of data



To do data right



And not inherit the complexities 
of the past



if SQL’s wrong, and 
NoSQL isn’t SQL, then 
NoSQL must be right

I know! Use a 
NoSQL database!



NoSQL databases are generally 
not a step in the right direction



Some aspects are, but not the 
ones that get all the attention



Still based on mutability and 
not general purpose



Let’s start from scratch

Let’s see how you design 
a data system that 
doesn’t suffer from 
these complexities



What does a data system do?



Retrieve data that you 
previously stored?

GetPut



Not really...



Counterexamples

Store location information on people

Where does Sally live?

What are the most populous locations?

How many people live in a particular location?



Counterexamples

Store pageview information

How many unique visitors over time?

How many pageviews on September 2nd?



Counterexamples

Store transaction history for bank account

How much money do people spend on housing?

How much money does George have?



What does a data system do?

Query = Function(All data)



Sometimes you retrieve what 
you stored



Oftentimes you do transformations, 
aggregations, etc.



Queries as pure functions that take 
all data as input is the most general 

formulation



Example query

Total number of pageviews to a 
URL over a range of time



Example query

Implementation



Too slow: “all data” is petabyte-scale



On-the-fly computation

All
data

Query



Precomputation

All
data

Precomputed
view Query



Precomputed view

Example query

All data

Pageview

Pageview

Pageview

Pageview

Pageview

Query 2930



Precomputation

All
data

Precomputed
view Query



Precomputation

All
data

Precomputed
view Query

Function Function



Data system

All
data

Precomputed
view Query

Function Function

Two problems to solve



Data system

All
data

Precomputed
view Query

Function Function

How to compute views



Data system

All
data

Precomputed
view Query

Function Function

How to compute queries from views



Computing views

All
data

Precomputed
viewFunction



Function that takes in 
all data as input



Batch processing



MapReduce



MapReduce is a framework for 
computing arbitrary functions on 

arbitrary data



Expressing those functions

Cascalog

Scalding



A
ll 

da
ta

Batch view #1

Batch view #2

MapReduce workflow

MapReduce workflow

MapReduce precomputation



Batch views are optimized for the 
queries they serve



Batch views

• Batch-writable from MapReduce
• Fast random reads
• Examples: ElephantDB, Voldemort



Batch view database

No random writes required!



Properties

All
data

Batch
viewFunction

Simple
ElephantDB is only a few 
thousand lines of code



Properties

All
data

Batch
viewFunction

Scalable



Properties

All
data

Batch
viewFunction

Highly available



Properties

All
data

Batch
viewFunction

Can be heavily optimized (b/c no random writes)



Properties

All
data

Batch
viewFunction

Normalized



Properties

All
data

Batch
viewFunction

“Denormalized”

Not exactly denormalization, because 
you’re doing more than just retrieving data 
that you stored (can do aggregations)

You’re able to optimize data storage 
separately from data modeling, without 
the complexity typical of denormalization 
in relational databases

*This is because the batch view is a pure 
function of all data* -> hard to get out of 
sync, and if there’s ever a problem (like a 
bug in your code that computes the wrong 
batch view) you can recompute

also easy to debug problems, since you have 
the input that produced the batch view -> 
this is not true in a mutable system based 
on incremental updates



So we’re done, right?



Not quite...
• A batch workflow is too slow
• Views are out of date

Absorbed into batch views Not absorbed

Now

Time

Just a few hours
of data!



What’s left?

Precompute views for last few 
hours of data



Application queries

Realtime view

Batch view

Merge



NoSQL databases

New data stream

Realtime view #1

Realtime view #2

Stream processor



Precomputation

All
data

Precomputed
view Query



Precomputation

All
data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

“Lambda Architecture”



Precomputation

All
data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

Most complex part of system



Precomputation

All
data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

Random write dbs much more complex
This is where things like 
vector clocks have to be 
dealt with if using 
eventually consistent 
NoSQL database



Precomputation

All
data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

But only represents few hours of data



Precomputation

All
data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

If anything goes wrong, auto-corrects
Can continuously discard 
realtime views, keeping 
them small



Precomputation

All
data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

“Complexity isolation”
Can continuously discard 
realtime views, keeping 
them small



Eventual accuracy

Sometimes hard to compute 
exact answer in realtime



Eventual accuracy

Example: unique count



Eventual accuracy

Can compute exact answer in 
batch layer and approximate 
answer in realtime layer

Though for functions 
which can be computed 
exactly in the realtime 
layer (e.g. counting), you 
can achieve full accuracy



Eventual accuracy

Best of both worlds of 
performance and accuracy



Tools

All
data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

MapReduce

Storm

“Lambda Architecture”

Storm

ElephantDB, Voldemort

Cassandra, Riak, HBase
Kafka

HDFS



Lambda Architecture
• Can discard batch views and realtime views and recreate everything 
from scratch

• Data storage layer optimized independently from query resolution layer

• Mistakes corrected via recomputation

what mistakes can be made?

   - write bad data? - remove the data and recompute the 
views

   - bug in the functions that compute view? - recompute the 
view

   - bug in query function? just deploy the fix



Lambda Architecture
• Batch and realtime views can be swapped for other stores as needed

• Function(All data) basis means it will support your future needs

what mistakes can be made?

   - write bad data? - remove the data and recompute the 
views

   - bug in the functions that compute view? - recompute the 
view

   - bug in query function? just deploy the fix



Learn more

http://manning.com/marz

http://manning.com/marz
http://manning.com/marz


Questions?

Thanks to Gary Fredericks for the dongle!


