
Runaway complexity in Big Data

Nathan Marz
@nathanmarz 1

And a plan to stop it

Agenda

• Common sources of complexity in data systems
• Design for a fundamentally better data system

What is a data system?

A system that manages the storage and
querying of data

What is a data system?

A system that manages the storage and
querying of data with a lifetime measured in
years

What is a data system?

A system that manages the storage and
querying of data with a lifetime measured in
years encompassing every version of the
application to ever exist

What is a data system?

A system that manages the storage and
querying of data with a lifetime measured in
years encompassing every version of the
application to ever exist, every hardware
failure

What is a data system?

A system that manages the storage and
querying of data with a lifetime measured in
years encompassing every version of the
application to ever exist, every hardware
failure, and every human mistake ever
made

Common sources of complexity

Lack of human fault-tolerance

Schemas done wrong

Conflation of data and queries

Lack of human fault-tolerance

Human fault-tolerance
• Bugs will be deployed to production over the lifetime of a data system
• Operational mistakes will be made
• Humans are part of the overall system, just like your hard disks, CPUs,
memory, and software

• Must design for human error like you’d design for any other fault

Human fault-tolerance
Examples of human error
• Accidentally delete data from database
• Deploy a bug that increments counters by two instead of by one
• Accidental DOS on important internal service

The worst consequence is
data loss or data corruption

As long as an error doesn’t
lose or corrupt good data,

you can fix what went wrong

Mutability
• The U and D in CRUD
• A mutable system updates the current state of the world
• Mutable systems inherently lack human fault-tolerance
• Easy to corrupt or lose data

Immutability
• An immutable system captures a historical record of events
• Each event happens at a particular time and is always true

Capturing change with mutable data
model

Person Location

Sally Philadelphia

Bob Chicago

Person Location

Sally New York

Bob Chicago

Sally moves to New York

Capturing change with immutable
data model

Person Location Time

Sally Philadelphia 1318358351

Bob Chicago 1327928370

Person Location Time

Sally Philadelphia 1318358351

Bob Chicago 1327928370

Sally New York 1338469380

Sally moves to New York

Immutability greatly restricts the
range of errors that can cause

data loss or data corruption

Vastly more human fault-tolerant

Immutability
Other benefits
• Fundamentally simpler
• CR instead of CRUD
• Only write operation is appending new units of data
• Easy to implement on top of a distributed filesystem

• File = list of data records
• Append = Add a new file into a directory

Immutability

Please watch Rich Hickey’s talks to learn more
about the enormous benefits of immutability

Conflation of data and queries

Conflation of data and queries
Normalization vs. denormalization

ID Name Location ID

1 Sally 3

2 George 1

3 Bob 3

Location ID City State Population

1 New York NY 8.2M

2 San Diego CA 1.3M

3 Chicago IL 2.7M

Normalized schema

Join is too expensive, so
denormalize...

ID Name Location ID City State

1 Sally 3 Chicago IL

2 George 1 New York NY

3 Bob 3 Chicago IL

Location ID City State Population

1 New York NY 8.2M

2 San Diego CA 1.3M

3 Chicago IL 2.7M

Denormalized schema

Obviously, you prefer all data to be
fully normalized

But you are forced to denormalize
for performance

Because the way data is modeled,
stored, and queried is complected

We will come back to how to build
data systems in which these are

disassociated

Schemas done wrong

Schemas have a bad rap

Schemas
• Hard to change
• Get in the way
• Add development overhead
• Requires annoying configuration

I know! Use a
schemaless database!

This is an overreaction

Confuses the poor implementation
of schemas with the value that

schemas provide

What is a schema exactly?

function(data unit)

That says whether this data is valid
or not

This is useful

Value of schemas
• Structural integrity
• Guarantees on what can and can’t be stored
• Prevents corruption

Otherwise you’ll detect corruption
issues at read-time

Potentially long after the corruption
happened

With little insight into the
circumstances of the corruption

Much better to get an exception
where the mistake is made,

before it corrupts the database

Saves enormous amounts of time

Why are schemas considered
painful?
• Changing the schema is hard (e.g., adding a column to a table)
• Schema is overly restrictive (e.g., cannot do nested objects)
• Require translation layers (e.g. ORM)
• Requires more typing (development overhead)

None of these are fundamentally
linked with function(data unit)

These are problems in the
implementation of schemas, not in

schemas themselves

Ideal schema tool
• Data is represented as maps
• Schema tool is a library that helps construct the schema function:

• Concisely specify required fields and types
• Insert custom validation logic for fields (e.g. ages are between 0 and 200)

• Built-in support for evolving the schema over time
• Fast and space-efficient serialization/deserialization
• Cross-language this is easy to use and gets out of your way

i use apache thrift, but it lacks the custom validation logic

i think it could be done better with a clojure-like data as maps approach

given that parameters of a data system: long-lived, ever changing, with mistakes being made, the
amount of work it takes to make a schema (not that much) is absolutely worth it

Let’s get provocative

The relational database will
be a footnote in history

Not because of SQL, restrictive
schemas, or scalability issues

But because of fundamental
flaws in the RDBMS approach

to managing data

Mutability

Conflating the storage of data
with how it is queried

“NewSQL” is misguided

Let’s use our ability to cheaply
store massive amounts of data

To do data right

And not inherit the complexities
of the past

if SQL’s wrong, and
NoSQL isn’t SQL, then
NoSQL must be right

I know! Use a
NoSQL database!

NoSQL databases are generally
not a step in the right direction

Some aspects are, but not the
ones that get all the attention

Still based on mutability and
not general purpose

Let’s start from scratch

Let’s see how you design
a data system that
doesn’t suffer from
these complexities

What does a data system do?

Retrieve data that you
previously stored?

GetPut

Not really...

Counterexamples

Store location information on people

Where does Sally live?

What are the most populous locations?

How many people live in a particular location?

Counterexamples

Store pageview information

How many unique visitors over time?

How many pageviews on September 2nd?

Counterexamples

Store transaction history for bank account

How much money do people spend on housing?

How much money does George have?

What does a data system do?

Query = Function(All data)

Sometimes you retrieve what
you stored

Oftentimes you do transformations,
aggregations, etc.

Queries as pure functions that take
all data as input is the most general

formulation

Example query

Total number of pageviews to a
URL over a range of time

Example query

Implementation

Too slow: “all data” is petabyte-scale

On-the-fly computation

All
data

Query

Precomputation

All
data

Precomputed
view Query

Precomputed view

Example query

All data

Pageview

Pageview

Pageview

Pageview

Pageview

Query 2930

Precomputation

All
data

Precomputed
view Query

Precomputation

All
data

Precomputed
view Query

Function Function

Data system

All
data

Precomputed
view Query

Function Function

Two problems to solve

Data system

All
data

Precomputed
view Query

Function Function

How to compute views

Data system

All
data

Precomputed
view Query

Function Function

How to compute queries from views

Computing views

All
data

Precomputed
viewFunction

Function that takes in
all data as input

Batch processing

MapReduce

MapReduce is a framework for
computing arbitrary functions on

arbitrary data

Expressing those functions

Cascalog

Scalding

A
ll

da
ta

Batch view #1

Batch view #2

MapReduce workflow

MapReduce workflow

MapReduce precomputation

Batch views are optimized for the
queries they serve

Batch views

• Batch-writable from MapReduce
• Fast random reads
• Examples: ElephantDB, Voldemort

Batch view database

No random writes required!

Properties

All
data

Batch
viewFunction

Simple
ElephantDB is only a few
thousand lines of code

Properties

All
data

Batch
viewFunction

Scalable

Properties

All
data

Batch
viewFunction

Highly available

Properties

All
data

Batch
viewFunction

Can be heavily optimized (b/c no random writes)

Properties

All
data

Batch
viewFunction

Normalized

Properties

All
data

Batch
viewFunction

“Denormalized”

Not exactly denormalization, because
you’re doing more than just retrieving data
that you stored (can do aggregations)

You’re able to optimize data storage
separately from data modeling, without
the complexity typical of denormalization
in relational databases

*This is because the batch view is a pure
function of all data* -> hard to get out of
sync, and if there’s ever a problem (like a
bug in your code that computes the wrong
batch view) you can recompute

also easy to debug problems, since you have
the input that produced the batch view ->
this is not true in a mutable system based
on incremental updates

So we’re done, right?

Not quite...
• A batch workflow is too slow
• Views are out of date

Absorbed into batch views Not absorbed

Now

Time

Just a few hours
of data!

What’s left?

Precompute views for last few
hours of data

Application queries

Realtime view

Batch view

Merge

NoSQL databases

New data stream

Realtime view #1

Realtime view #2

Stream processor

Precomputation

All
data

Precomputed
view Query

Precomputation

All
data

Precomputed
batch view

Query

Precomputed
realtime view

New data stream

“Lambda Architecture”

Precomputation

All
data

Precomputed
batch view

Query

Precomputed
realtime view

New data stream

Most complex part of system

Precomputation

All
data

Precomputed
batch view

Query

Precomputed
realtime view

New data stream

Random write dbs much more complex
This is where things like
vector clocks have to be
dealt with if using
eventually consistent
NoSQL database

Precomputation

All
data

Precomputed
batch view

Query

Precomputed
realtime view

New data stream

But only represents few hours of data

Precomputation

All
data

Precomputed
batch view

Query

Precomputed
realtime view

New data stream

If anything goes wrong, auto-corrects
Can continuously discard
realtime views, keeping
them small

Precomputation

All
data

Precomputed
batch view

Query

Precomputed
realtime view

New data stream

“Complexity isolation”
Can continuously discard
realtime views, keeping
them small

Eventual accuracy

Sometimes hard to compute
exact answer in realtime

Eventual accuracy

Example: unique count

Eventual accuracy

Can compute exact answer in
batch layer and approximate
answer in realtime layer

Though for functions
which can be computed
exactly in the realtime
layer (e.g. counting), you
can achieve full accuracy

Eventual accuracy

Best of both worlds of
performance and accuracy

Tools

All
data

Precomputed
batch view

Query

Precomputed
realtime view

New data stream

MapReduce

Storm

“Lambda Architecture”

Storm

ElephantDB, Voldemort

Cassandra, Riak, HBase
Kafka

HDFS

Lambda Architecture
• Can discard batch views and realtime views and recreate everything
from scratch

• Data storage layer optimized independently from query resolution layer

• Mistakes corrected via recomputation

what mistakes can be made?

 - write bad data? - remove the data and recompute the
views

 - bug in the functions that compute view? - recompute the
view

 - bug in query function? just deploy the fix

Lambda Architecture
• Batch and realtime views can be swapped for other stores as needed

• Function(All data) basis means it will support your future needs

what mistakes can be made?

 - write bad data? - remove the data and recompute the
views

 - bug in the functions that compute view? - recompute the
view

 - bug in query function? just deploy the fix

Learn more

http://manning.com/marz

http://manning.com/marz
http://manning.com/marz

Questions?

Thanks to Gary Fredericks for the dongle!

