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Ericsson Telecom Switch
Requirements

e Large number of concurrent activities

e Large software systems distributed across multiple
computers

e Continuous operation for years
e Live updates and maintenance

e Tolerance for both hardware and software faults
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Today’'s Data/Web/Cloud/
Service Apps

e Large number of concurrent activities

e Large software systems distributed across multiple
computers

e Continuous operation for years
e Live updates and maintenance

e Tolerance for both hardware and software faults
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CONCURRENCY




They Come For The
Concurrency...

e Erlang processes are very lightweight, much lighter than
OS threads

e Hundreds of thousands or even millions of processes
per Erlang VM instance
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...But They Stay For The
Reliability

e Isolation: Erlang processes communicate only via
message passing

e Distribution: Erlang process model works across nodes

e Linking/supervision/monitoring: allow an Erlang
process to take action when another fails
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A Small Language

e Erlang has just a few elements: numbers, atoms, tuples,
lists, records, binaries, functions, modules

e Variables are immutable, no globals

e Flow control via pattern matching, case, if, try-catch,
recursion, messages
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Concurrency Primitives

« No mutexes, condition variables, or other error-prone
concurrency constructs

e All Erlang code runs within some process, always

e processes are not “extra” like threads in other
languages

©
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Concurrency Primitives

e spawn: Create a new Erlang process

o | (exclamation point) or send: send a message to another
Erlang process, even on another node

e Messages can be any Erlang term

e Messages from A to B arrive in the order sent

2id| | ok
P1d2 | [{first, "Jjohn"} {last,"Doe"}].

©
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Concurrency Primitives

e« Each process has a message queue

e receive: receive a message from another Erlang process

o Selective receive allows receiving specific messages from anywhere
within the message queue

feee
{ok, Reply} ->
do_something(Reply);
ferror Earor. &
uh_oh(Error)

end.

©
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Erlang Immutability

e Erlang assignment is pattern matching, not mutation

e Unbound variables get the value of the right-hand side
and then can't be changed

©
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Erlang Immutability

foo() ->
A= 2, % A 1s bound to 2




Erlang Immutability

A= 2, % pattern match A to 2, result 1s 2




Erlang Immutability

% pattern match A to 3, throw badmatch
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foo() ->

s
1

Erlang Immutability

% A 1s bound to 2
% pattern match A to 2, result i1s 2
% pattern match A to 3, throw badmatch
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Easy To Learn

e Language size means developers become proficient
quickly

e Code is typically brief, easy to read, easy to understand

e Erlang’'s Open Telecom Platform (OTP) frameworks solve
recurring problems across multiple domains

©
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Riak

e A distributed highly available
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e A distributed highly available eventually consistent
highly scalable
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Riak

e A distributed highly available eventually consistent
highly scalable open source
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Riak

e A distributed highly available eventually consistent
highly scalable open source key-value database
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Riak

e A distributed highly available eventually consistent
highly scalable open source key-value database

written primarily in Erlang.
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Riak

e Modeled after Amazon Dynamo

e see Andy Gross's "Dynamo, Five Years Later" for details
https://speakerdeck.com/argv0/dynamo-five-years-later

e Also provides MapReduce, secondary indexes, and full-
text search

e Built for operational ease
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Riak Architecture

(Erlang]( Ruby )(Python][ PHP ][Nodejs]

(Java ](C/C++]( .NET ][ Go ][More ]

Riak Clients .

------------------------------------

image courtesy of Eric Redmond, "A Little Riak Book™ https:/github.com/coderoshi/little riak book/
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Riak Architecture

[Erlang][ Ruby ][Python][ PHP ][Nodejs]
(Java ](C/C++]( .NET ][ Go ][More ]

Riak Clients .
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Riak Architecture

[Erlang][ Ruby ][Python][ PHP ][Nodejs]
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Riak Clients .
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Riak Architecture

il Erlang l[ Ruby ][Python][ PHP ][Nodejs]
(Java ](C/C++]( .NET ][ Go ][More ]

Riak Clients .
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Distributing Data

e Riak uses consistent hashing to spread
data across the cluster

e Minimizes remapping of keys when
number of nodes changes

e Spreads data evenly and minimizes
hotspots

©
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Consistent Hashing

e Riak uses SHA-1 as a hash function
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Consistent Hashing

* Riak uses SHA-1 as a hash function
e Treats its 160-bit value space as a ring

e Divides the ring into partitions called "virtual
nodes"” or vhodes (default 64)

e Each vnode claims a portion of the ring space

 Each physical node in the cluster hosts
multiple vnodes

©

Wednesday, April 24, 13

29



Hash Ring

ZléO 0

3%)160/4 2160/4




Hash Ring
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Hash Ring
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e N = number of replicas to store (default 3, can be set
per bucket)

e R = read quorum = number of replica responses needed
for a successful read (can be specified per-request)
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N/R/W Values

e N = number of replicas to store (default 3, can be set
per bucket)

e R = read quorum = number of replica responses needed
for a successful read (can be specified per-request)

« W = write quorum = number of replica responses

needed for a successful write (can be specified per-
request)
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N/R/W Values

_get/put("artist", "REM",
R/W=2)
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Implementing Consistent
Hashing

e Erlang’'s crypto module integration with OpenSSL
provides the SHA-1 function

e Hash values are 160 bits

e But that's OK, Erlang's integers are infinite precision

e And Erlang binaries store these large values efficiently

©
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Implementing Consistent
Hashing

1> HashBin = crypto:sha("my object key").




Implementing Consistent
Hashing

1> HashBin = crypto:sha("my object key").
<<189,73,125,145,132,154,3,75,50,12,195,156,7,170,128,52,
157,242,158,159>>
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Implementing Consistent
Hashing

2> byte_size(HashBin).
20




Implementing Consistent
Hashing

3> <<HashInt:160/integer>> = HashBin.
<<189,73,125,145,132,154,3,75,50,12,195,156;7,170,128,52,
157,242,158,159>>
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Implementing Consistent
Hashing

4> Hashlnt.
1080638148638140855100958270058021626367330918047
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Implementing Consistent
Hashing

1> HashBin = crypto:sha("my object key").
<<189,73,125,145,132,154,3,75,50,12,195,156,7,170,128,52,
157,242,158,159>>

2> byte_size(HashBin).

20

3> <<HashInt:160/integer>> = HashBin.
<<189.73,125,145,132,154.3,75,50,12,195,156,7,170,128.5Z,
157,242,158,159>>

4> Hashlnt.
1080638148638140855100958270058021626367330918047
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5> rp(riak_core_ring_manager:get_my_ring()).
{ok, {chstate_v2, 'dev1@127.0.0.1",
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Riak's Ring

[{'dev1@127.0
{'dev2@127.0
{'dev3@127.0

83
0.1
0.1

'+1211,63521635595% ¢,
*1.5,03921035021 1 ¢,
',13,63521635544}1 ],
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123945984,

247891968,

Riak's Ring

{64,
[{0, 'dev1@127.0.0.1'},
{22835963083295358096932575511191922182

'dev2@127.0.0.1'},
{45671926166590716193865151022383844364
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Riak's Ring

5> rp(riak_core_ring_manager:get_my_ring()).
{ok, {chstate_v2, 'dev1@127.0.0.1",
[{'dev1@127.0.0.1",{211,63521635595}},
{'dev2@127.0.0.1",{3,63521635521}},
{'dev3@127.0.0.1",{3,63521635544}}],
{64,
[{0, 'dev1@127.0.0.1'},
{22835963083295358096932575511191922182
123945984,
'dev2@127.0.0.1'},
{45671926166590716193865151022383844364
247891968,
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Ring State

e All nodes in a Riak cluster are peers, no masters or
slaves

e Nodes exchange their understanding of ring state via a
gossip protocol

Wednesday, April 24, 13
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Distributed Erlang

e Erlang has distribution built in — it's required for
supporting multiple nodes for reliability

e By default Erlang nodes form a mesh, every node knows
about every other node

e Riak uses this for intra-cluster communication

©
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Distributed Erlang

e Riak lets you simulate a multi-node installment
on a single machine, nice for development

e 'make devrel” or "make stagedevrel” in a riak
repository clone (git://github.com/basho/riak.git)

e Let's assume we have nodes devl, dev2, and
dev3 running in a cluster, nothing on the 4th
node yet

e Instead of starting riak, let's start the 4th node
as just a plain distributed erlang node

©
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Distributed Erlang

$ erl -name dev4@127.0.0.1 -setcookie riak
Erlang R15B01 (erts-5.9.1) [source] [64-bit] [smp:8:8]
[async-threads:0] [kernel-poll:false]

Eshell V5.9.1 (abort with AG)
(dev4@127.0.0.1)1>
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Distributed Erlang

(dev4@127.0.0.1)1> nodes().
L]




Distributed Erlang

(dev4@127.0.0.1)2> net_adm:ping('dev1@127.0.0.1").
pong

©




Distributed Erlang

(dev4@127.0.0.1)3> nodes().
['dev1@127.0.0.1", 'dev3@127.0.0.1", 'dev2@127.0.0.1"]

©
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Distributed Erlang

$ erl -name dev4@127.0.0.1 -setcookie riak
Erlang R15B01 (erts-5.9.1) [source] [64-bit] [smp:8:8]
[async-threads:0] [kernel-poll:false]

Eshell V5.9.1 (abort with AG)

(dev4@127.0.0.1)1> nodes().

L}

(dev4@127.0.0.1)2> net_adm:ping('dev1@127.0.0.1").
pong

(dev4@127.0.0.1)3> nodes().

['dev1@127.0.0.1", "dev3i@127.0.0.1", "dev2@127.0.0.1"]
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Distributed Erlang Mesh

e Nodes talk to each other
occasionally to check
liveness
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Distributed Erlang Mesh

e Nodes talk to each other
occasionally to check
liveness

« Mesh approach makes it /

easy to set up a cluster




Distributed Erlang Mesh

e Nodes talk to each other
occasionally to check
liveness

e Mesh approach makes it
easy to set up a cluster

e But communication
overhead means it
doesn't scale to large
clusters > 150 nodes

(yet)

-

-

~—
~
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Gossip

e Riak nodes are peers, there's no master

e But the ring has state, such as what vnodes each node
has claimed

e Nodes periodically send their understanding of the ring
state to other randomly chosen nodes

e Riak gossip module also provides an API for sending
ring state to specific nodes

©
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Control Vs. Data

e Distributed Erlang: good for control plane, not so good
for data plane
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Control Vs. Data

e Distributed Erlang: good for control plane, not so good
for data plane

e Sending large data can cause busy distribution ports
and head-of-line blocking

e Use TCP, UDP, etc. directly for data plane traffic
e Don't mix control plane and data plane traffic

e unfortunately Riak currently still does this in a few
places

©
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Riak Core

Riak Clients }

'----~

: Riak AP :
s )
Riak KV
\_ J

7z )
Bitcask ] [eLevelDB] [I\’Iemory] [ Multi
\ / J
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Riak Core

Riak Core
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® consistent
hashing

e vector clocks

* sloppy quorums

Riak Core

Riak Core

® 00ssIp protocols

e virtual nodes

(vnodes)
¢ hinted handoff
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N/R/W Values

_,get/put("artist”™, "REM",
R/W=2)

K\\"A{ok, Object}
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Hinted Handoff

e Fallback vnode holds data for unavailable primary vnode
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Hinted Handoff

e Fallback vnode holds data for unavailable primary vnode

e Fallback vnode keeps checking for availability of primary
vhode

e Once primary vnode becomes available, fallback hands
off data to it

e Fallback vnodes are started as needed, thanks to Erlang
lightweight processes

©
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Read Repair

e If a read detects a vhode with stale data, it is repaired
via asynchronous update

e« Helps implement eventual consistency

e Starting at version 1.3, Riak supports active anti-
entropy (AAE) to actively repair stale values

©
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Core Protocols

e Gossip, handoff, read repair, etc. all require intra-
cluster protocols

e Erlang distribution and other features help significantly
with protocol implementations

e Erlang monitors allow processes and nodes to watch
each other while interacting

e« A monitoring process/node is notified if a monitored

process/node dies, great for aborting failed
Interactions

©

Wednesday, April 24, 13

62



Binary Handling

e Erlang’s binaries make working with network packets
easy

e For example, deconstructing a TCP message (from
Cesarini & Thompson “Erlang Programming”)

TCP Header
Offsets Octet 0 1 2 3
Octet Bit 0 1 2 3 4 5 6 789101112 13 14 151617 18 19 20 21 22 23 24 2526 27 28 29 30 31
0 0 Source port Destination port
4 32 Sequence number
8 64 Acknowledgment number (if ACK set)
12 96 Data offset R:szrv:d 1: ti i lli 2 : 2 3 i‘ Window Size

RE/G|K|H|T| N|N
16 128 Checksum Urgent pointer (if URG set)

source: http://en.wikipedia.org/wiki/ Transmission_Control_Protocol

©
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Binary Handling

TcpBuf.




Binary Handling

TCP header fields

Lk . .

<<SourcePort:16, DestinationPort:16,
SequenceNumber:32, AckNumber:32,
DataOffset:4, _Rsrvd:4, Flags:8,
WindowSi1ze:16, Checksum:16, UrgentPtr:16,
= TcpBuf.

©
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Binary Handling

Data/binary>>

B

TCP data payload

©

TcpBuf.




Binary Handling

<<SourcePort:16, DestinationPort:16,
SequenceNumber:32, AckNumber:32,
DataOffset:4, _Rsrvd:4, Flags:8,
WindowSize:16, Checksum:16, UrgentPtr:16,
Data/binary>> = TcpBuf.

©
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Protocols With OTP

« OTP provides libraries of standard modules

« And also behaviors: implementations of common
patterns for concurrent, distributed, fault-tolerant
Erlang apps
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OTP Behavior Modules

e A behavior is similar to an abstract base class in OO
terms, providing:

e 2 message handling tail-call optimized loop

e integration with underlying OTP system for code
upgrade, tracing, process management, etc.

©
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OTP Behaviors

e application: plugs into Erlang application controller
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OTP Behaviors

e application: plugs into Erlang application controller
e supervisor: manages and monitors worker processes
e gen_server: server process framework

e gen_fsm: finite state machine framework

e gen_event: event handling framework
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Gen server

e Generic server behavior for handling messages
e Supports server-like components, distributed or not
e “Business logic” lives in app-specific callback module

e« Maintains state in a tail-call optimized receive loop
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Gen fsm

e Behavior supporting finite state machines (FSMs)
e Tail-call loop for maintaining state, like gen_server

e States and events handled by app-specific callback
module

e Allows events to be sent into an FSM either sync or
async

©
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Riak And Gen _*

e Riak makes heavy use of these behaviors, e.g.:
e FSMs for get and put operations

e Vnode FSM

e Gossip module is a gen_server

©
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Behavior Benefits

e Standardized frameworks providing common patterns,
common vocabulary

e Used by pretty much all non-trivial Erlang systems

e Erlang developers understand them, know how to read
them

©
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Behavior Benefits

e Separate a lot of messaging, debugging, tracing
support, system concerns from business logic

INncoming
messages

e,
outgoing
messages

callback
Gl : App
e callback
module < | module
replies
system application
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Workers & Supervisors

e« Workers implement application logic
e Supervisors:
e start child workers and sub-supervisors
e link to the children and trap child process exits

e take action when a child dies, typically restarting one
or more children

©
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Let It Crash

e In his doctoral thesis, Joe Armstrong, creator of Erlang,
wrote:

Let some other process do the error recovery,.

If you can’t do what you want to do, die.

Let it crash.

Do not program defensively.

see http://www.erlang.org/download/armstrong thesis 2003.pdf

©
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Erlang/OTP System Facilities

e Get status of an OTP process

e Get process info for any process
e Trace function calls, messages

e Releases

e Live upgrades
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INTEGRATION




image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little riak book/

Riak Architecture

[Erlang][ Ruby ][Python][ PHP ][Nodejs]

[Java ][C/C++ ][ .NET )[ Go )[More )

Riak Clients .
\ ___________________________________ P4
((m—————--——----—------—---—-—---—-—------=- J
! |
l[ Webmachine HTTP J [ Riak PB J:
; |
" |
{ Riak API ;
N N\ ‘;
l[ Riak KV J [ Riak Pipe J [ Yokozuna ]:
; |
" |
! Riak Core :
[Bltcaskj [eLeveIDBJ [Memory] [ Multi J
L Erlang )
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Riak Architecture

[Bncask] [eLeve.DB] [Memoryj [ wutt ]

L Erlang )

[ \
i

< /

N

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/
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Riak Architecture

Erlang on top

[B.tcask] [eLeve.DB] [Memoryj [ wutt ]

Erlang )

C/C++ on the bottom

/""*\\

| " J |
| < s

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/
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Linking With C/C++

e Erlang provides the ability to dynamically link C/C++
libraries into the VM

e« One way is through the driver interface

e for example the VM supplies network and file system
facilities via drivers

« Another way is through Native Implemented Functions
(NIFs)

©
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Native Implemented Functions
(NIFs)

e Lets C/C++ functions operate as Erlang functions
e Erlang module serves as entry point
« When module loads it dynamically loads its NIF shared

library, overlaying its Erlang functions with C/C++
replacements

©
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Example: Eleveldb

e NIF wrapper around Google's LevelDB C++ database

e Erlang interface plugs in underneath Riak KV
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Example: Eleveldb

%% Erlang
open(Name, Opts) ->
erlang:nif_error({error, not_loaded}).




Example: Eleveldb

// C++
ERL_NIF_TERM

eleveldb_open(ErlNifEnv* env, int argc,
const ERL_NIF_TERM argv[])
{

©




Example: Eleveldb

// C++
ERL_NIF_TERM

eleveldb_open(ErlNifEnv* env, int argc,
const ERL_NIF_TERM argv[])
{

char name[4096] ;
1f (enif_get_string(env,argv[@],name,
sizeof name,ERL_NIF_LATIN1) &&
enif_is_list(env, argv[1l]))
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NIF Features

e Easy to convert arguments and return values between
C/C++ and Erlang

e Ref count binaries to avoid data copying where needed

e Portable interface to OS multithreading capabilities
(threads, mutexes, cond vars, etc.)

©
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NIF Caveats

e Crashes in your linked-in C/C++ kill the whole VM

e Lesson: use NIFs and drivers only when needed, and
don't write crappy code

Wednesday, April 24, 13

90



NIF Caveats




NIF Caveats

e NIF calls execute within a VM scheduler thread

Wednesday, April 24, 13

91



NIF Caveats

e NIF calls execute within a VM scheduler thread

o If the NIF blocks, the scheduler thread blocks

Wednesday, April 24, 13

91



NIF Caveats

e NIF calls execute within a VM scheduler thread
e If the NIF blocks, the scheduler thread blocks

e THIS IS VERY BAD

Wednesday, April 24, 13

91



NIF Caveats

e NIF calls execute within a VM scheduler thread
o If the NIF blocks, the scheduler thread blocks

e THIS IS VERY BAD

e NIFs should block for no more than 1 millisecond

©
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NIF Caveats

e Last fall Basho found "scheduler anomalies” where

e the VM would put most of its schedulers to sleep, by
design, under low load

e but would fail to wake them up as load increased

e Caused by NIF calls that were taking multiple seconds in
some cases

e Lesson: put long-running activities in their own threads

©
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TESTING




Eunit

e Erlang’s unit testing facility

e Support for asserting test results, grouping tests, setup
and teardown, etc.

e Used heavily in Riak
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QuickCheck

e Property-based testing product from Quviq, invented by
John Hughes (a co-inventor of Haskell)

e Create a model of the software under test
e QuickCheck runs randomly-generated tests against it

e When it finds a failure, QuickCheck automatically
shrinks the testcase to a minimum for easier debugging

e Used heavily in Riak, especially to test various protocols
and interactions

©
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Miscellaneous

e Memory

e Erlang shell

e Hot code loading
« VM knowledge

e Finding Erlang developers

©
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Memory

e Process message queues have no limits, can cause out-
of-memory conditions if a process can't keep up

e By design, VM dies if it runs out of memory

e Apps like Riak run Erlang memory monitors that help
log and notify about looming out-of-memory conditions

©

Wednesday, April 24, 13 98



Interactive Erlang Shell

e« Hard to imagine working without it

« Huge help during development and debug




Hot Code Loading

e It really works
e Use it all the time during development
« We've also used it to load repaired code into live

production systems for customers (with their permission
of course)

©
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VM Knowledge

e Running high-scale high-load systems like Riak requires
knowledge of Erlang VM internals

e No different than working with the JVM or other
language runtimes
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Finding Erlang Devs

e Erlang is easy to learn
e Not really a problem to hire Erlang programmers

e Basho hires great developers, those who need to learn
Erlang just do it

e BTW we're hiring, see
http://bashojobs.theresumator.com

©
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SUMMARY




Summary: Why Erlang For Riak?

e Distributed systems features
e sort of a "distributed systems DSL"
e« Concurrency features
e Reliability features
« Runtime introspection capabilities

e Individual developer and team productivity

©
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For More Erlang Info

Programming
Erlang ..o

Learn You Some

Erlang na RS Etang for
L) Programming | .‘g, . Great Good!

Introddiecing g “\_ A Beginner's Guide
e

Erlang

OREILLY"
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For More Riak Info

e "A Little Riak Book" by Basho's Eric Redmond
https://github.com/coderoshi/little_riak_book/

« Mathias Meyer's "Riak Handbook"
http://riakhandbook.com

e Eric Redmond's "Seven Databases in Seven Weeks"
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks

©
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For More Riak Info

e Basho documentation
http://docs.basho.com

e Basho blog
http://basho.com/blog/

e« Basho's github repositories
https://github.com/basho
https://github.com/basho-labs

©
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THANKS

http://basho.com
@stevevinosk
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