IMPLEMENTING RIAK
IN ERLANG:
BENEFITS AND CHALLENGES

Steve Vinoski

Basho Technologies

Cambridge, MA USA

http://basho.com

@stevevinoski

vinoski@ieee.org
http://steve.vinoski.net/

©

http://basho.com
http://basho.com
mailto:vinoski@ieee.org
mailto:vinoski@ieee.org
http://steve.vinoski.net
http://steve.vinoski.net

ERLANG

Ericsson Telecom Switch
Requirements

Ericsson Telecom Switch
Requirements

e Large number of concurrent activities

Ericsson Telecom Switch
Requirements

e Large number of concurrent activities

e Large software systems distributed across multiple
computers

Wednesday, April 24, 13

Ericsson Telecom Switch
Requirements

e Large number of concurrent activities

e Large software systems distributed across multiple
computers

e Continuous operation for years

Wednesday, April 24, 13

Ericsson Telecom Switch
Requirements

e Large number of concurrent activities

e Large software systems distributed across multiple
computers

e Continuous operation for years

e Live updates and maintenance

©

Wednesday, April 24, 13

Ericsson Telecom Switch
Requirements

e Large number of concurrent activities

e Large software systems distributed across multiple
computers

e Continuous operation for years
e Live updates and maintenance

e Tolerance for both hardware and software faults

©

Wednesday, April 24, 13

Today’'s Data/Web/Cloud/
Service Apps

e Large number of concurrent activities

e Large software systems distributed across multiple
computers

e Continuous operation for years
e Live updates and maintenance

e Tolerance for both hardware and software faults

©

Wednesday, April 24, 13

CONCURRENCY

They Come For The
Concurrency...

e Erlang processes are very lightweight, much lighter than
OS threads

e Hundreds of thousands or even millions of processes
per Erlang VM instance

Wednesday, April 24, 13

...But They Stay For The
Reliability

...But They Stay For The
Reliability

e [solation: Erlang processes communicate only via
message passing

...But They Stay For The
Reliability

e Isolation: Erlang processes communicate only via
message passing

e Distribution: Erlang process model works across nodes

...But They Stay For The
Reliability

e Isolation: Erlang processes communicate only via
message passing

e Distribution: Erlang process model works across nodes

e Linking/supervision/monitoring: allow an Erlang
process to take action when another fails

©

Wednesday, April 24, 13

Erlang Process Architecture

Erlang Process Architecture

Erlang Process Architecture

OS + kernel threads

CPU CPU
- Core N

Erlang Process Architecture

SMP

Schedulers
one per core) N

Erlang VM

OS + kernel threads

CPU CPU
- Core N

Erlang Process Architecture

Run Queues

-

SMP

Schedulers
one per core) N

Erlang VIM

OS + kernel threads

CPU CPU
- Core N

Erlang Process Architecture

Process Run Queues @
Process \ @
/
/

Y v, B
- B

Schedulers
one per core) N Erlang VM

Process

N

OS + kernel threads

CPU CPU

o Core N

Wednesday, April 24, 13

A Small Language

A Small Language

e Erlang has just a few elements: numbers, atoms, tuples,
lists, records, binaries, functions, modules

Wednesday, April 24, 13

A Small Language

e Erlang has just a few elements: numbers, atoms, tuples,
lists, records, binaries, functions, modules

e Variables are immutable, no globals

Wednesday, April 24, 13

A Small Language

e Erlang has just a few elements: numbers, atoms, tuples,
lists, records, binaries, functions, modules

e Variables are immutable, no globals

e Flow control via pattern matching, case, if, try-catch,
recursion, messages

©

Wednesday, April 24, 13

Concurrency Primitives

« No mutexes, condition variables, or other error-prone
concurrency constructs

e All Erlang code runs within some process, always

e processes are not “extra” like threads in other
languages

©

Wednesday, April 24, 13

10

Concurrency Primitives

e spawn: Create a new Erlang process

o | (exclamation point) or send: send a message to another
Erlang process, even on another node

e Messages can be any Erlang term

e Messages from A to B arrive in the order sent

2id| | ok
P1d2 | [{first, "Jjohn"} {last,"Doe"}].

©

Wednesday, April 24, 13

Concurrency Primitives

e« Each process has a message queue

e receive: receive a message from another Erlang process

o Selective receive allows receiving specific messages from anywhere
within the message queue

feee
{ok, Reply} ->
do_something(Reply);
ferror Earor. &
uh_oh(Error)

end.

©

Wednesday, April 24, 13

12

Erlang Immutability

e Erlang assignment is pattern matching, not mutation

e Unbound variables get the value of the right-hand side
and then can't be changed

©

Wednesday, April 24, 13

13

Erlang Immutability

foo() ->
A= 2, % A 1s bound to 2

Erlang Immutability

A= 2, % pattern match A to 2, result 1s 2

Erlang Immutability

% pattern match A to 3, throw badmatch

©

foo() ->

s
1

Erlang Immutability

% A 1s bound to 2
% pattern match A to 2, result i1s 2
% pattern match A to 3, throw badmatch

©

Wednesday, April 24, 13

17

Easy To Learn

e Language size means developers become proficient
quickly

e Code is typically brief, easy to read, easy to understand

e Erlang’'s Open Telecom Platform (OTP) frameworks solve
recurring problems across multiple domains

©

Wednesday, April 24, 13

18

AR T

. - - gt
L X EAAR T R S ow o e w b S8 R

Wednesday, April 24, 13 19

Wednesday, April 24, 13 20

A -
R

¥

Wednesday, April 24, 13 20

Riak

e A distributed highly available

Wednesday, April 24, 13

20

Riak

e A distributed highly available eventually consistent

Wednesday, April 24, 13

20

Riak

e A distributed highly available eventually consistent
highly scalable

Wednesday, April 24, 13

20

Riak

e A distributed highly available eventually consistent
highly scalable open source

Wednesday, April 24, 13

20

Riak

e A distributed highly available eventually consistent
highly scalable open source key-value database

Wednesday, April 24, 13

20

Riak

e A distributed highly available eventually consistent
highly scalable open source key-value database

written primarily in Erlang.

©

Wednesday, April 24, 13

20

Riak

e Modeled after Amazon Dynamo

e see Andy Gross's "Dynamo, Five Years Later" for details
https://speakerdeck.com/argv0/dynamo-five-years-later

e Also provides MapReduce, secondary indexes, and full-
text search

e Built for operational ease

©

Wednesday, April 24, 13

21

https://speakerdeck.com/argv0/dynamo-five-years-later
https://speakerdeck.com/argv0/dynamo-five-years-later

Riak Architecture

(Erlang](Ruby)(Python][PHP][Nodejs]

(Java](C/C++](.NET][Go][More]

Riak Clients .

image courtesy of Eric Redmond, "A Little Riak Book™ https:/github.com/coderoshi/little riak book/

Wednesday, April 24, 13

22

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

[Erlang][Ruby)[Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients .
____________________________________ P4
(f—=======—====-=----==-=—-==--=--=-=< S
' I
l[Webmachine HTTP] [Riak PB]:
; |
0 [
{ Riak API ;

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Wednesday, April 24, 13

23

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Riak Architecture

[Erlang][Ruby][Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients .
____________________________________ P4
(f—=======—====-=----==-=—-==--=--=-=< S
' :
l[Webmachine HTTP] [Riak PB]:
l .
| |
! Riak API ; '
— ‘:
l[Riak KV] [Riak Pipe J [Yokozuna J:
l .
| |
! Riak Core :

Wednesday, April 24, 13

24

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Riak Architecture

[Erlang][Ruby][Python][PHP][Nodejs]

[Java][C/C++][.NET)[Go)[More)

Riak Clients .
\ ___________________________________ P4
((m—————--——----—------—---—-—---—-—------=- J
! |
l[Webmachine HTTP J [Riak PB J:
; |
" |
{ Riak API ;
N N\ ‘;
l[Riak KV J [Riak Pipe J [Yokozuna]:
; |
" |
! Riak Core :
[Bltcaskj [eLeveIDBJ [Memory] [Multi J
L Erlang)

Wednesday, April 24, 13

25

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

il Erlang l[Ruby][Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients .
___________________________________ V4
--------------------------------- <)

f }
: Webmachine HTTP Rlak PB :
: I
i |
: Riak API |
NN :
: Riak KV Rlak Plpe Yokozuna :
: I
i |
{ Riak Core '
| Bitcask l'eLeveIDB l' Memory l' Multi l
L Erlang)

Erlang parts

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Wednesday, April 24, 13

26

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

\;;;/ 5
W
)
9.0 Q'O,W'ﬂ' <,

P> 25
LN) foz'a

)
v
»
>,
¥,
>

9’

‘¢|

Wednesday, April 24, 13

Riak Cluster

—
. n g o — M -

Distributing Data

e Riak uses consistent hashing to spread
data across the cluster

e Minimizes remapping of keys when
number of nodes changes

e Spreads data evenly and minimizes
hotspots

©

Wednesday, April 24, 13

28

ey
PO 09
e et
RN
505

o

5K

——

Tt e

_e

()
SRS s
LIRS ICR R

< LR O M N 0 X
e e e T oY e

13

Wednesday, April 24,

Consistent Hashing

e Riak uses SHA-1 as a hash function

Wednesday, April 24, 13

29

Consistent Hashing

e Riak uses SHA-1 as a hash function

e Treats its 160-bit value space as a ring

Wednesday, April 24, 13

29

Consistent Hashing

e Riak uses SHA-1 as a hash function
e Treats its 160-bit value space as a ring

* Divides the ring into partitions called "virtual
nodes” or vnodes (default 64)

Wednesday, April 24, 13

29

Consistent Hashing

e Riak uses SHA-1 as a hash function

e Treats its 160-bit value space as a ring

e Divides the ring into partitions called "virtual
nodes" or vnodes (default 64)

e Each vnode claims a portion of the ring space

©

Wednesday, April 24, 13

29

Consistent Hashing

* Riak uses SHA-1 as a hash function
e Treats its 160-bit value space as a ring

e Divides the ring into partitions called "virtual
nodes"” or vhodes (default 64)

e Each vnode claims a portion of the ring space

 Each physical node in the cluster hosts
multiple vnodes

©

Wednesday, April 24, 13

29

Hash Ring

ZléO 0

3%)160/4 2160/4

Hash Ring

7 160

0
) \ e single vnode/partition

node O

node |

a ring with 32 partitions

<160
&% node 2

)
/ o=

hash(<<"artist">>,<<"REM">>)

Wednesday, April 24, 13

Hash Ring

2 160

z//()
) \ /a single vnode/partition

node O

node |

a ring with 32 partitions

<160
&% node 2

)
/ =

hash(<<"artist">>,<<"REM">>)

NG — T T

S 2160/ bucket key

e

S

"

[

LA N

Fa T e s ‘ /
O w

3
e SN
. ‘ai;f;;‘ o

LSRN PR
Wednesday, April 24, 13 31

N/R/W Values

N/R/W Values

e N = number of replicas to store (default 3, can be set
per bucket)

N/R/W Values

e N = number of replicas to store (default 3, can be set
per bucket)

e R = read quorum = number of replica responses needed
for a successful read (can be specified per-request)

Wednesday, April 24, 13

32

N/R/W Values

e N = number of replicas to store (default 3, can be set
per bucket)

e R = read quorum = number of replica responses needed
for a successful read (can be specified per-request)

« W = write quorum = number of replica responses

needed for a successful write (can be specified per-
request)

©

Wednesday, April 24, 13

32

Wenr e
’ .'.'.':.:'.\ ‘.':

W
N

. -

N/R/W Values

’ \ put(<<"artist">>,<<"REM">>)

(N=3) glele[N0

node |

node 2

node 3

;
N

for details see http://docs.basho.com/riak/|.3. | /tutorials/fast-track/Tunable-CAP-Controls-in-Riak/

\NV~~\ 7'_,.4"’ o >
O o . . N >y
i SN Pate:
‘e-""‘o:k S : e ;.:/_:‘
PN o e e - . e
L) A £ A .-‘_\ \

ednesday, April 24,13 - 3

http://docs.basho.com/riak/1.3.1/tutorials/fast-track/Tunable-CAP-Controls-in-Riak/
http://docs.basho.com/riak/1.3.1/tutorials/fast-track/Tunable-CAP-Controls-in-Riak/

N/R/W Values

_get/put("artist", "REM",
R/W=2)

K'<<>k, Object}

Implementing Consistent
Hashing

Implementing Consistent
Hashing

e Erlang’'s crypto module integration with OpenSSL
provides the SHA-1 function

Wednesday, April 24, 13

35

Implementing Consistent
Hashing

e Erlang’'s crypto module integration with OpenSSL
provides the SHA-1 function

e Hash values are 160 bits

Wednesday, April 24, 13

35

Implementing Consistent
Hashing

e Erlang’s crypto module integration with OpenSSL
provides the SHA-1 function

e Hash values are 160 bits

e But that's OK, Erlang's integers are infinite precision

©

Wednesday, April 24, 13

35

Implementing Consistent
Hashing

e Erlang’'s crypto module integration with OpenSSL
provides the SHA-1 function

e Hash values are 160 bits

e But that's OK, Erlang's integers are infinite precision

e And Erlang binaries store these large values efficiently

©

Wednesday, April 24, 13

35

Implementing Consistent
Hashing

1> HashBin = crypto:sha("my object key").

Implementing Consistent
Hashing

1> HashBin = crypto:sha("my object key").
<<189,73,125,145,132,154,3,75,50,12,195,156,7,170,128,52,
157,242,158,159>>

Wednesday, April 24, 13

37

Implementing Consistent
Hashing

2> byte_size(HashBin).
20

Implementing Consistent
Hashing

3> <<HashInt:160/integer>> = HashBin.
<<189,73,125,145,132,154,3,75,50,12,195,156;7,170,128,52,
157,242,158,159>>

Wednesday, April 24, 13

39

Implementing Consistent
Hashing

4> Hashlnt.
1080638148638140855100958270058021626367330918047

Wednesday, April 24, 13

Implementing Consistent
Hashing

1> HashBin = crypto:sha("my object key").
<<189,73,125,145,132,154,3,75,50,12,195,156,7,170,128,52,
157,242,158,159>>

2> byte_size(HashBin).

20

3> <<HashInt:160/integer>> = HashBin.
<<189.73,125,145,132,154.3,75,50,12,195,156,7,170,128.5Z,
157,242,158,159>>

4> Hashlnt.
1080638148638140855100958270058021626367330918047

Wednesday, April 24, 13 41

riak_core_ring_manager:get_my_ring()).

%
< o

SO MO

T SN
e

Wednesday, April 24, 13 42

>
SN
‘«'m...'
ey ¥ N

5> rp(riak_core_ring_manager:get_my_ring()).
{ok, {chstate_v2, 'dev1@127.0.0.1",

x
< o

* 4000 X

T SN
S

Wednesday, April 24, 13 43

Riak's Ring

[{'dev1@127.0
{'dev2@127.0
{'dev3@127.0

83
0.1
0.1

'+1211,63521635595% ¢,
*1.5,03921035021 1 ¢,
',13,63521635544}1],

Wednesday, April 24, 13

44

123945984,

247891968,

Riak's Ring

{64,
[{0, 'dev1@127.0.0.1'},
{22835963083295358096932575511191922182

'dev2@127.0.0.1'},
{45671926166590716193865151022383844364

Wednesday, April 24, 13

45

Riak's Ring

5> rp(riak_core_ring_manager:get_my_ring()).
{ok, {chstate_v2, 'dev1@127.0.0.1",
[{'dev1@127.0.0.1",{211,63521635595}},
{'dev2@127.0.0.1",{3,63521635521}},
{'dev3@127.0.0.1",{3,63521635544}}],
{64,
[{0, 'dev1@127.0.0.1'},
{22835963083295358096932575511191922182
123945984,
'dev2@127.0.0.1'},
{45671926166590716193865151022383844364
247891968,

Wednesday, April 24, 13 46

Ring State

e All nodes in a Riak cluster are peers, no masters or
slaves

e Nodes exchange their understanding of ring state via a
gossip protocol

Wednesday, April 24, 13

47

Distributed Erlang

e Erlang has distribution built in — it's required for
supporting multiple nodes for reliability

e By default Erlang nodes form a mesh, every node knows
about every other node

e Riak uses this for intra-cluster communication

©

Wednesday, April 24, 13

48

Distributed Erlang

e Riak lets you simulate a multi-node installment
on a single machine, nice for development

e 'make devrel” or "make stagedevrel” in a riak
repository clone (git://github.com/basho/riak.git)

e Let's assume we have nodes devl, dev2, and
dev3 running in a cluster, nothing on the 4th
node yet

e Instead of starting riak, let's start the 4th node
as just a plain distributed erlang node

©

Wednesday, April 24, 13

49

Distributed Erlang

$ erl -name dev4@127.0.0.1 -setcookie riak
Erlang R15B01 (erts-5.9.1) [source] [64-bit] [smp:8:8]
[async-threads:0] [kernel-poll:false]

Eshell V5.9.1 (abort with AG)
(dev4@127.0.0.1)1>

Wednesday, April 24, 13 50

Distributed Erlang

(dev4@127.0.0.1)1> nodes().
L]

Distributed Erlang

(dev4@127.0.0.1)2> net_adm:ping('dev1@127.0.0.1").
pong

©

Distributed Erlang

(dev4@127.0.0.1)3> nodes().
['dev1@127.0.0.1", 'dev3@127.0.0.1", 'dev2@127.0.0.1"]

©

Wednesday, April 24, 13

53

Distributed Erlang

$ erl -name dev4@127.0.0.1 -setcookie riak
Erlang R15B01 (erts-5.9.1) [source] [64-bit] [smp:8:8]
[async-threads:0] [kernel-poll:false]

Eshell V5.9.1 (abort with AG)

(dev4@127.0.0.1)1> nodes().

L}

(dev4@127.0.0.1)2> net_adm:ping('dev1@127.0.0.1").
pong

(dev4@127.0.0.1)3> nodes().

['dev1@127.0.0.1", "dev3i@127.0.0.1", "dev2@127.0.0.1"]

Wednesday, April 24, 13 54

o
N

~Distributed Erlang Mesh

— e
-~
//

-~ ~

(B o |
Wednesday, April 24, 13 55

Distributed Erlang Mesh

Distributed Erlang Mesh

e Nodes talk to each other
occasionally to check
liveness

.
.

~—
~

Distributed Erlang Mesh

e Nodes talk to each other
occasionally to check
liveness

« Mesh approach makes it /

easy to set up a cluster

Distributed Erlang Mesh

e Nodes talk to each other
occasionally to check
liveness

e Mesh approach makes it
easy to set up a cluster

e But communication
overhead means it
doesn't scale to large
clusters > 150 nodes

(yet)

-

-

~—
~

Wednesday, April 24, 13

55

Gossip

e Riak nodes are peers, there's no master

e But the ring has state, such as what vnodes each node
has claimed

e Nodes periodically send their understanding of the ring
state to other randomly chosen nodes

e Riak gossip module also provides an API for sending
ring state to specific nodes

©

Wednesday, April 24, 13

56

Control Vs. Data

Control Vs. Data

e Distributed Erlang: good for control plane, not so good
for data plane

Wednesday, April 24, 13

57

Control Vs. Data

e Distributed Erlang: good for control plane, not so good
for data plane

e Sending large data can cause busy distribution ports
and head-of-line blocking

Wednesday, April 24, 13

57

Control Vs. Data

e Distributed Erlang: good for control plane, not so good
for data plane

e Sending large data can cause busy distribution ports
and head-of-line blocking

e Use TCP, UDP, etc. directly for data plane traffic

Wednesday, April 24, 13

57

Control Vs. Data

e Distributed Erlang: good for control plane, not so good
for data plane

e Sending large data can cause busy distribution ports
and head-of-line blocking

e Use TCP, UDP, etc. directly for data plane traffic
e Don't mix control plane and data plane traffic

e unfortunately Riak currently still does this in a few
places

©

Wednesday, April 24, 13

57

Riak Core

Riak Clients }

'----~

: Riak AP :
s)
Riak KV
_ J

7z)
Bitcask] [eLevelDB] [I\’Iemory] [Multi
\ / J

Wednesday, April 24, 13

58

Riak Core

Riak Core

Wednesday, April 24, 13

58

® consistent
hashing

e vector clocks

* sloppy quorums

Riak Core

Riak Core

® 00ssIp protocols

e virtual nodes

(vnodes)
¢ hinted handoff

Wednesday, April 24, 13

58

N/R/W Values

_,get/put("artist”™, "REM",
R/W=2)

K\\"A{ok, Object}

Hinted Handoff

Hinted Handoff

e Fallback vnode holds data for unavailable primary vnode

Wednesday, April 24, 13

60

Hinted Handoff

e Fallback vnode holds data for unavailable primary vnode

e Fallback vnode keeps checking for availability of primary
vhode

Wednesday, April 24, 13

60

Hinted Handoff

e Fallback vnode holds data for unavailable primary vnode

e Fallback vnode keeps checking for availability of primary
vhode

e Once primary vnode becomes available, fallback hands
off data to it

Wednesday, April 24, 13

60

Hinted Handoff

e Fallback vnode holds data for unavailable primary vnode

e Fallback vnode keeps checking for availability of primary
vhode

e Once primary vnode becomes available, fallback hands
off data to it

e Fallback vnodes are started as needed, thanks to Erlang
lightweight processes

©

Wednesday, April 24, 13 60

Read Repair

e If a read detects a vhode with stale data, it is repaired
via asynchronous update

e« Helps implement eventual consistency

e Starting at version 1.3, Riak supports active anti-
entropy (AAE) to actively repair stale values

©

Wednesday, April 24, 13

61

Core Protocols

e Gossip, handoff, read repair, etc. all require intra-
cluster protocols

e Erlang distribution and other features help significantly
with protocol implementations

e Erlang monitors allow processes and nodes to watch
each other while interacting

e« A monitoring process/node is notified if a monitored

process/node dies, great for aborting failed
Interactions

©

Wednesday, April 24, 13

62

Binary Handling

e Erlang’s binaries make working with network packets
easy

e For example, deconstructing a TCP message (from
Cesarini & Thompson “Erlang Programming”)

TCP Header
Offsets Octet 0 1 2 3
Octet Bit 0 1 2 3 4 5 6 789101112 13 14 151617 18 19 20 21 22 23 24 2526 27 28 29 30 31
0 0 Source port Destination port
4 32 Sequence number
8 64 Acknowledgment number (if ACK set)
12 96 Data offset R:szrv:d 1: ti i lli 2 : 2 3 i‘ Window Size

RE/G|K|H|T| N|N
16 128 Checksum Urgent pointer (if URG set)

source: http://en.wikipedia.org/wiki/ Transmission_Control_Protocol

©

Wednesday, April 24, 13 63

Binary Handling

TcpBuf.

Binary Handling

TCP header fields

Lk . .

<<SourcePort:16, DestinationPort:16,
SequenceNumber:32, AckNumber:32,
DataOffset:4, _Rsrvd:4, Flags:8,
WindowSi1ze:16, Checksum:16, UrgentPtr:16,
= TcpBuf.

©

Wednesday, April 24, 13

65

Binary Handling

Data/binary>>

B

TCP data payload

©

TcpBuf.

Binary Handling

<<SourcePort:16, DestinationPort:16,
SequenceNumber:32, AckNumber:32,
DataOffset:4, _Rsrvd:4, Flags:8,
WindowSize:16, Checksum:16, UrgentPtr:16,
Data/binary>> = TcpBuf.

©

Wednesday, April 24, 13

67

Protocols With OTP

« OTP provides libraries of standard modules

« And also behaviors: implementations of common
patterns for concurrent, distributed, fault-tolerant
Erlang apps

Wednesday, April 24, 13

68

OTP Behavior Modules

e A behavior is similar to an abstract base class in OO
terms, providing:

e 2 message handling tail-call optimized loop

e integration with underlying OTP system for code
upgrade, tracing, process management, etc.

©

Wednesday, April 24, 13

69

OTP Behaviors

OTP Behaviors

e application: plugs into Erlang application controller

Wednesday, April 24, 13

70

OTP Behaviors

e application: plugs into Erlang application controller

e supervisor: manages and monitors worker processes

Wednesday, April 24, 13

70

OTP Behaviors

e application: plugs into Erlang application controller
e Supervisor: manages and monitors worker processes

e gen_server: server process framework

Wednesday, April 24, 13

70

OTP Behaviors

e application: plugs into Erlang application controller
e Supervisor: manages and monitors worker processes
e gen_server: server process framework

e gen_fsm: finite state machine framework

©

Wednesday, April 24, 13

70

OTP Behaviors

e application: plugs into Erlang application controller
e supervisor: manages and monitors worker processes
e gen_server: server process framework

e gen_fsm: finite state machine framework

e gen_event: event handling framework

©

Wednesday, April 24, 13

70

Gen server

e Generic server behavior for handling messages
e Supports server-like components, distributed or not
e “Business logic” lives in app-specific callback module

e« Maintains state in a tail-call optimized receive loop

©

Wednesday, April 24, 13

71

Gen fsm

e Behavior supporting finite state machines (FSMs)
e Tail-call loop for maintaining state, like gen_server

e States and events handled by app-specific callback
module

e Allows events to be sent into an FSM either sync or
async

©

Wednesday, April 24, 13

72

Riak And Gen _*

e Riak makes heavy use of these behaviors, e.g.:
e FSMs for get and put operations

e Vnode FSM

e Gossip module is a gen_server

©

Wednesday, April 24, 13

73

Behavior Benefits

e Standardized frameworks providing common patterns,
common vocabulary

e Used by pretty much all non-trivial Erlang systems

e Erlang developers understand them, know how to read
them

©

Wednesday, April 24, 13

74

Behavior Benefits

e Separate a lot of messaging, debugging, tracing
support, system concerns from business logic

INncoming
messages

e,
outgoing
messages

callback
Gl : App
e callback
module < | module
replies
system application

©

Wednesday, April 24, 13

75

Workers & Supervisors

e« Workers implement application logic
e Supervisors:
e start child workers and sub-supervisors
e link to the children and trap child process exits

e take action when a child dies, typically restarting one
or more children

©

Wednesday, April 24, 13

76

Let It Crash

e In his doctoral thesis, Joe Armstrong, creator of Erlang,
wrote:

Let some other process do the error recovery,.

If you can’t do what you want to do, die.

Let it crash.

Do not program defensively.

see http://www.erlang.org/download/armstrong thesis 2003.pdf

©

Wednesday, April 24, 13

77

http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf

Application, Supervisors,
Workers

Application, Supervisors,
Workers

Application ‘

Application, Supervisors,
Workers

Application ‘

l

-
=

SUpPErvIsors

Application, Supervisors,
Workers

Application ‘

l

-

SUpPErvIsors /
VWorkers s ‘ ‘ '

Application, Supervisors,
Workers

Application

SUpPErvIsors

Workers

Erlang/OTP System Facilities

e Get status of an OTP process

e Get process info for any process
e Trace function calls, messages

e Releases

e Live upgrades

Wednesday, April 24, 13

79

INTEGRATION

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little riak book/

Riak Architecture

[Erlang][Ruby][Python][PHP][Nodejs]

[Java][C/C++][.NET)[Go)[More)

Riak Clients .
\ ___________________________________ P4
((m—————--——----—------—---—-—---—-—------=- J
! |
l[Webmachine HTTP J [Riak PB J:
; |
" |
{ Riak API ;
N N\ ‘;
l[Riak KV J [Riak Pipe J [Yokozuna]:
; |
" |
! Riak Core :
[Bltcaskj [eLeveIDBJ [Memory] [Multi J
L Erlang)

Wednesday, April 24, 13

81

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

[Bncask] [eLeve.DB] [Memoryj [wutt]

L Erlang)

[\
i

< /

N

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Wednesday, April 24, 13

82

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

Erlang on top

[B.tcask] [eLeve.DB] [Memoryj [wutt]

Erlang)

C/C++ on the bottom

/""*\\

| " J |
| < s

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Wednesday, April 24, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Linking With C/C++

e Erlang provides the ability to dynamically link C/C++
libraries into the VM

e« One way is through the driver interface

e for example the VM supplies network and file system
facilities via drivers

« Another way is through Native Implemented Functions
(NIFs)

©

Wednesday, April 24, 13

83

Native Implemented Functions
(NIFs)

e Lets C/C++ functions operate as Erlang functions
e Erlang module serves as entry point
« When module loads it dynamically loads its NIF shared

library, overlaying its Erlang functions with C/C++
replacements

©

Wednesday, April 24, 13 84

Example: Eleveldb

e NIF wrapper around Google's LevelDB C++ database

e Erlang interface plugs in underneath Riak KV

Wednesday, April 24, 13

85

Example: Eleveldb

%% Erlang
open(Name, Opts) ->
erlang:nif_error({error, not_loaded}).

Example: Eleveldb

// C++
ERL_NIF_TERM

eleveldb_open(ErlNifEnv* env, int argc,
const ERL_NIF_TERM argv[])
{

©

Example: Eleveldb

// C++
ERL_NIF_TERM

eleveldb_open(ErlNifEnv* env, int argc,
const ERL_NIF_TERM argv[])
{

char name[4096] ;
1f (enif_get_string(env,argv[@],name,
sizeof name,ERL_NIF_LATIN1) &&
enif_is_list(env, argv[1l]))

Wednesday, April 24, 13 88

NIF Features

e Easy to convert arguments and return values between
C/C++ and Erlang

e Ref count binaries to avoid data copying where needed

e Portable interface to OS multithreading capabilities
(threads, mutexes, cond vars, etc.)

©

Wednesday, April 24, 13

89

NIF Caveats

e Crashes in your linked-in C/C++ kill the whole VM

e Lesson: use NIFs and drivers only when needed, and
don't write crappy code

Wednesday, April 24, 13

90

NIF Caveats

NIF Caveats

e NIF calls execute within a VM scheduler thread

Wednesday, April 24, 13

91

NIF Caveats

e NIF calls execute within a VM scheduler thread

o If the NIF blocks, the scheduler thread blocks

Wednesday, April 24, 13

91

NIF Caveats

e NIF calls execute within a VM scheduler thread
e If the NIF blocks, the scheduler thread blocks

e THIS IS VERY BAD

Wednesday, April 24, 13

91

NIF Caveats

e NIF calls execute within a VM scheduler thread
o If the NIF blocks, the scheduler thread blocks

e THIS IS VERY BAD

e NIFs should block for no more than 1 millisecond

©

Wednesday, April 24, 13

91

NIF Caveats

e Last fall Basho found "scheduler anomalies” where

e the VM would put most of its schedulers to sleep, by
design, under low load

e but would fail to wake them up as load increased

e Caused by NIF calls that were taking multiple seconds in
some cases

e Lesson: put long-running activities in their own threads

©

Wednesday, April 24, 13

92

TESTING

Eunit

e Erlang’s unit testing facility

e Support for asserting test results, grouping tests, setup
and teardown, etc.

e Used heavily in Riak

Wednesday, April 24, 13

94

QuickCheck

e Property-based testing product from Quviq, invented by
John Hughes (a co-inventor of Haskell)

e Create a model of the software under test
e QuickCheck runs randomly-generated tests against it

e When it finds a failure, QuickCheck automatically
shrinks the testcase to a minimum for easier debugging

e Used heavily in Riak, especially to test various protocols
and interactions

©

Wednesday, April 24, 13 95

MISCELLANEOUS

Miscellaneous

e Memory

e Erlang shell

e Hot code loading
« VM knowledge

e Finding Erlang developers

©

Wednesday, April 24, 13

97

Memory

e Process message queues have no limits, can cause out-
of-memory conditions if a process can't keep up

e By design, VM dies if it runs out of memory

e Apps like Riak run Erlang memory monitors that help
log and notify about looming out-of-memory conditions

©

Wednesday, April 24, 13 98

Interactive Erlang Shell

e« Hard to imagine working without it

« Huge help during development and debug

Hot Code Loading

e It really works
e Use it all the time during development
« We've also used it to load repaired code into live

production systems for customers (with their permission
of course)

©

Wednesday, April 24, 13 100

VM Knowledge

e Running high-scale high-load systems like Riak requires
knowledge of Erlang VM internals

e No different than working with the JVM or other
language runtimes

Wednesday, April 24, 13 101

Finding Erlang Devs

e Erlang is easy to learn
e Not really a problem to hire Erlang programmers

e Basho hires great developers, those who need to learn
Erlang just do it

e BTW we're hiring, see
http://bashojobs.theresumator.com

©

Wednesday, April 24, 13 102

http://bashojobs.theresumator.com
http://bashojobs.theresumator.com

SUMMARY

Summary: Why Erlang For Riak?

e Distributed systems features
e sort of a "distributed systems DSL"
e« Concurrency features
e Reliability features
« Runtime introspection capabilities

e Individual developer and team productivity

©

Wednesday, April 24, 13 104

For More Erlang Info

Programming
Erlang ..o

Learn You Some

Erlang na RS Etang for
L) Programming | .‘g, . Great Good!

Introddiecing g “_ A Beginner's Guide
e

Erlang

OREILLY"

Wednesday, April 24, 13

105

For More Riak Info

e "A Little Riak Book" by Basho's Eric Redmond
https://github.com/coderoshi/little_riak_book/

« Mathias Meyer's "Riak Handbook"
http://riakhandbook.com

e Eric Redmond's "Seven Databases in Seven Weeks"
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks

©

Wednesday, April 24, 13

106

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/
http://riakhandbook.com
http://riakhandbook.com
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks

For More Riak Info

e Basho documentation
http://docs.basho.com

e Basho blog
http://basho.com/blog/

e« Basho's github repositories
https://github.com/basho
https://github.com/basho-labs

©

Wednesday, April 24, 13 107

http://basho.com
http://basho.com
http://basho.com/blog/
http://basho.com/blog/
https://github.com/basho
https://github.com/basho
https://github.com/basho-labs
https://github.com/basho-labs

THANKS

http://basho.com
@stevevinosk

©

http://basho.com
http://basho.com

