
Thomas Rodgers
DRW Trading Group
trodgers@drw.com

Objectives

• Improve understanding of performance
trade-offs inherent in modern hardware
architectures

• How those tradeoffs impact data structure
choices

• Make a case for preferring “modern” C++
constructs/idioms

Conceptual model

CPU RAM

The architecture everybody would like to develop for, and usually does

Classic Von Neumann architecture
Or, because it’s all multicore these days, maybe this...

Conceptual Model

RAM

CPU

CPU

CPU

CPU

Last time this sort of simplistic model existed...

1979

Contemporary with the end of the era polyester shirts and disco
When this guy...

C with Classes

Started working on what would eventually become C++

1998
C++

ISO standard

* Sandia National Labs’ ASCI “Red”, ~9200 PII’s, peak numerical throughput ~1.3Tflops, first super
computer to achieve a sustained TFLOP
* 850 kW, 1600 sq. ft. at a cost $55M
* Worlds fastest super computer until late 2000

C++03

* Back when we still thought these guys had a chance
* Opteron notable for defining what became the x86-64 ISA
* Fixed a number of bugs in the original C++98 standard, what most of us have worked with since

C++11

Most significant update to the language since 1998
CPU is an Intel Sandy Bridge 8C Xeon, ~2.7Bn transistors

Today

≈

You can get roughly ASCI Red’s floating point performance on a chip

Today

as a $2500 add in card, draws about ~250 watts

Primary development tool chain, Intel C++ / Fortran

Reality

RAM

L3
slice

Mem. Controller

L3
slice

L3
slice

L3
slice

L3
slice

L3
slice

L2L2 L2 L2 L2 L2
L1IL1D L1I L1I L1I L1IL1IL1I L1DL1D L1D L1D L1D L1D

EU EU EU EU EU EU

Reality looks more like this

Multiple cache tiers, with a very small, in relative terms, area of the CPU die dedicated to actually executing your code

The rest, by in large is there to hide memory latency

And, increasingly, control power distribution, integrate IO, memory control, etc.

Intel Xeon E5-2600

2.7Bn transistors
20MB L3 cache
8 Cores, each 256k L2 cache, 32k instruction + 32k data L1 cache
1.5k uop L0 cache

Size affects latency

• L1 cache, 32kb+32kb, ~4 clk

• L2 cache, 256kb, <12 clk

• L3 cache, 2.5mb/core, ~30 clk, unshared

• DRAM ~200clk, 60ns same socket

Big Memory != Fast Memory

L3 additional stats -
* 65 clk shared by another core/same socket
* 75 clk modified by another core/same socket
* 100-300 clk shared/modified by a core in a different socket

DRAM additional stats -
* 100ns different socket
* modern four issue super scalar CPU can execute 500-1000 instructions in the
time it takes to load from DRAM

DRAM
Bandwidth vs Latency

1980 2012

Latency 225ns 60ns

Bandwith 13Mb/sec 13Gb/sec

Moore’s law tends to benefit bandwidth more than latency
1000x improvement in bandwidth, 4x improvement in latency

STL set and map

• Typically implemented as a red/black tree

• Three pointers

• left, right, parent

• Space for a key, or key/value pair

• 64 bit architecture

• minimum size 32 bytes

For a map with string keys, minimum size is 72 bytes
Larger than a single cache line on x86-64

lookup vs sorted
vector

0us

375000us

750000us

1125000us

1500000us

1000 10000 100000 1000000

std::set std::vector

Lookups in an ordered vector are always faster, this has been the case for quite a
while
Boost flat map/flat set give you a set/map interface to a sorted vector
Not a good choice where frequent insertions are required

“We assume that the index itself is so
voluminous that only rather small parts of it can
be kept in main store at one time. Thus the bulk

of the index must be kept on some backup
store. The class of backup stores considered are

pseudo random access devices which have a
rather long access or wait time -- as opposed to
a true random access device like core store --

and a rather high data rate once the
transmission of physically sequential data has
been initiated. Typical pseudo random access

devices are: fixed and moving head discs, drums,
and data cells.”

- Organization and maintenance of large
ordered indexes

Prof. Dr. R. Bayer, Dr. E. M. McCreight

In 1972 Rudolf Beyer and Ed McCraight published this paper on the B-tree data
structure
Today it’s used extensively for database indexes and increasingly file system
organization

“We assume that the index itself is so
voluminous that only rather small parts of it can
be kept in main store at one time. Thus the bulk

of the index must be kept on some backup
store. The class of backup stores considered are

pseudo random access devices which have a
rather long access or wait time -- as opposed to
a true random access device like core store --

and a rather high data rate once the
transmission of physically sequential data has
been initiated. Typical pseudo random access

devices are: fixed and moving head discs, drums,
and data cells.”

- Organization and maintenance of large
ordered indexes

Prof. Dr. R. Bayer, Dr. E. M. McCreight

Sounds like a modern CPU cache

“We assume that the index itself is so
voluminous that only rather small parts of it can
be kept in main store at one time. Thus the bulk

of the index must be kept on some backup
store. The class of backup stores considered are

pseudo random access devices which have a
rather long access or wait time -- as opposed to
a true random access device like core store --

and a rather high data rate once the
transmission of physically sequential data has
been initiated. Typical pseudo random access

devices are: fixed and moving head discs, drums,
and data cells.”

- Organization and maintenance of large
ordered indexes

Prof. Dr. R. Bayer, Dr. E. M. McCreight

Sounds like a modern DRAM

btree vs vector, set

0us

375000us

750000us

1125000us

1500000us

1000 10000 100000 1000000

std::set std::vector btree_set

Btree performance is substantially better, with much less overhead per key/value pair
stored

unordered vs ordered

0us

375000us

750000us

1125000us

1500000us

1000 10000 100000 1000000

std::set std::vector btree_set unordered_set

Of course, if you only care about lookups...

Prefer compact data

• Prefer compact representations

• Prefer contiguous memory layouts

• Node based containers generally have poor
locality

• std::set, std::map, std::list

* or any sort of sparse data structure tend to perform poorly

Numbers to remember

● L1 Cache Reference - 0.5ns

● Branch mispredict - 5ns
● L2 Cache Reference - 7ns

● DRAM reference – 60-100ns

● Read 1MB sequentially from RAM -
250µs

C++11 Idioms

Prefer make_shared

auto foo = std::make_shared<Foo>(a, b, c);

std::shared_ptr<Foo> foo(new Foo(a, b, c));

Do this -

Rather than this -

First version makes a single allocation and placement-new’s the
contained type
No make_unique, yet, C++14

Prefer emplace

std::vector<Foo> foos;

foos.emplace_back(a, b, c);

std::vector<Foo> foos;

foos.push_back(Foo(a, b, c));

Do this -

Rather than this -

Where a container supports it

Avoids extra copy or move

Prefer making types

struct point {
 float x;
 float y;
};

point upper, lower;
...
surface.draw_rect(upper, lower);

Do this -

Not strictly a C++11 thing, but

Prefer making types
Rather than this -

float ux, uy, lx, ly;;
...
surface.draw_rect(ux, uy, lx, ly);

With a type, there’s no possibility of confusing argument order
Compiler generates the same code

Small types by value

struct point {
 float x;
 float y
};

void draw_rect(point upper, point lower) {
 ...
}

Do this -

Small types by value
Do this -

struct point {
 float x;
 float y
};

void draw_rect(point const& upper, point const& lower) {
 ...
}

Compiler will tend to pass small types via registers, in this case upper
and lower can both be enregistered
no possibility of aliasing with values, may end up being slightly faster

Prefer C++ to C

This

#include	
 <cstdlib>
	

int	
 compare_ints(const	
 void*	
 a,	
 const	
 void*	
 b)	
 {
	
 	
 	
 	
 int*	
 arg1	
 =	
 (int*)	
 a;
	
 	
 	
 	
 int*	
 arg2	
 =	
 (int*)	
 b;
	
 	
 	
 	
 if	
 (*arg1	
 >	
 *arg2)	
 return	
 -­‐1;
	
 	
 	
 	
 else	
 if	
 (*arg1	
 ==	
 *arg2)	
 return	
 0;
	
 	
 	
 	
 else	
 return	
 1;
}
	

...

qsort(a,	
 size,	
 sizeof(int),	
 compare_ints);
	

Also not strictly a C++11 thing, but if you are new to C++ or in the
habit of using C++ as a “better” C

Prefer C++ to C

Is much slower than this

std::sort(s.begin(),	
 s.end(),	
 std::greater<int>());

about 2.5x slower
qsort is part of the C standard library, does things the C way, throws
away all type information, no opportunity to inline comparison function
Same idea goes for copy vs. memcpy

std::sort is much more succinct

Prefer STL algorithms

vector<position> positions;
...
vector<position> expired;
vector<position> unexpired;
partition_copy(begin(positions), end(positions),
 inserter(expired, end(expired)),
 inserter(unexpired, end(unexpired)),
 is_expired);

Do this -

The abstraction is free, generates the same code as if you had hand
written it

Prefer STL algorithms
Instead of this -

vector<position> positions;
...
vector<position> expired;
vector<position> unexpired;
for (auto it = begin(positions); it != end(positions); ++it) {
 if (is_expired(*it))
 expired.emplace_back(*it);
 else
 unexpired.emplace_back(*it);
}

Prefer STL algorithms
Or even this -

vector<position> positions;
...
vector<position> expired;
vector<position> unexpired;
for (auto p : positions) {
 if (is_expired(p))
 expired.emplace_back(p);
 else
 unexpired.emplace_back(p);
}

Prior to C++11 there was an argument for not using STL style
algorithms, the syntax was clumsy if the default predicate wasn’t
sufficient, C++11 lambda syntax greatly improves matters, and generic
lambdas in C++14 make it cleaner still.

Algorithms state up front, what they are going to do, e.g. for_each, you
know when reading code that it will visit each element in the range, a
naked for loop, you have to consider at least four things, init,
condition, increment, body

Prefer STL algorithms

• Parallelized and vectorized abstractions

• Standards proposal N3354

Likely coming in some form, probably C++17
If you are in the habit of expressing your code in terms of operations
on ranges, using things like transforms, it will be a fairly direct process
to enable parallel or vectorized versions of your code

To some extent you can already do this using Thrust

Thrust
http://thrust.github.com

• Modeled on the STL

• Host and device vectors

• Similar to std::vector

• Handle details of transfers to/from device
memory

Thrust
http://thrust.github.com

• Algorithms expressed as functors which
transform iterator ranges

• Also supports “fusing” transformations into
single device calls via fancy iterators

• transform_iterator lazily applies a functor
to an underlying range to generate new
values

Thrust
http://thrust.github.com

• Backends Target

• CUDA - nVidia GPGPUs

• OpenMP - clusters of servers

• Intel’s TBB - multiple cores, same
machine

Seems likely it will also be able to target the Xeon Phi co-processors I
mentioned earlier
as that uses thread building blocks to express concurrent operations

Thank you, questions?

