
IMPLEMENTING RIAK
IN ERLANG:

BENEFITS AND CHALLENGES
Steve Vinoski

Basho Technologies
Cambridge, MA USA
http://basho.com

@stevevinoski
vinoski@ieee.org

http://steve.vinoski.net/

1Wednesday, October 9, 13

http://basho.com
http://basho.com
mailto:vinoski@ieee.org
mailto:vinoski@ieee.org
http://steve.vinoski.net
http://steve.vinoski.net

ERLANG

2Wednesday, October 9, 13

• 1980s: Ericsson Computer Science Laboratories (CSL)
sought better ways to program telecom switches

• Joe Armstrong created Erlang based on Prolog, with
influence from ML, Ada, Smalltalk, other languages

• Open sourced in 1998, available from http://erlang.org

• Ericsson develops and maintains it with community help

• Latest production release: R16B (Feb 2013)

Erlang

3Wednesday, October 9, 13

http://erlang.org
http://erlang.org

• Large number of concurrent activities

• Large software systems distributed across multiple
computers

• Continuous operation for years

• Live updates and maintenance

• Tolerance for both hardware and software faults

Ericsson Telecom Switch
Requirements

4Wednesday, October 9, 13

• Large number of concurrent activities

• Large software systems distributed across multiple
computers

• Continuous operation for years

• Live updates and maintenance

• Tolerance for both hardware and software faults

Today’s Data/Web/Cloud/
Service Apps

5Wednesday, October 9, 13

CONCURRENCY

6Wednesday, October 9, 13

• Erlang processes are very lightweight, much lighter than
OS threads

• Hundreds of thousands or even millions of processes
per Erlang VM instance

They Come For The
Concurrency...

7Wednesday, October 9, 13

• Isolation: Erlang processes communicate only via
message passing

• Distribution: Erlang process model works across nodes

• Linking/supervision/monitoring: allow an Erlang
process to take action when another fails

...But They Stay For The
Reliability

8Wednesday, October 9, 13

Run QueuesProcess

Process

Process

Process

Process

Process

OS + kernel threads
CPU

Core 1 CPU
Core N

Erlang VMN1

SMP
Schedulers

(one per core)

Erlang Process Architecture

9Wednesday, October 9, 13

A Small Language

• Erlang has just a few elements: numbers, atoms, tuples,
lists, records, binaries, functions, modules

• Variables are immutable, no globals

• Flow control via pattern matching, case, if, try-catch,
recursion, messages

10Wednesday, October 9, 13

Concurrency Primitives

• No mutexes, condition variables, or other error-prone
concurrency constructs

• All Erlang code runs within some process, always

• processes are not “extra” like threads in other
languages

11Wednesday, October 9, 13

• spawn: create a new Erlang process

• ! (exclamation point) or send: send a message to another
Erlang process, even on another node

• Messages can be any Erlang term

• Messages from A to B arrive in the order sent

Concurrency Primitives

Pid1 ! ok,
Pid2 ! [{first, "John"},{last,"Doe"}].

12Wednesday, October 9, 13

• Each process has a message queue

• receive: receive a message from another Erlang process

• Selective receive allows receiving specific messages from
anywhere within the message queue

Concurrency Primitives

receive
 {ok, Reply} ->
 do_something(Reply);
 {error, Error} ->
 uh_oh(Error)
end.

13Wednesday, October 9, 13

Erlang Immutability

• Erlang assignment is pattern matching, not mutation

• Unbound variables get the value of the right-hand side
and then can't be changed

14Wednesday, October 9, 13

Erlang Immutability

15Wednesday, October 9, 13

Erlang Immutability

16Wednesday, October 9, 13

Erlang Immutability

17Wednesday, October 9, 13

Erlang Immutability

18Wednesday, October 9, 13

Easy To Learn

• Language size means developers become proficient
quickly

• Code is typically brief, easy to read, easy to understand

• Erlang's Open Telecom Platform (OTP) frameworks solve
recurring problems across multiple domains

19Wednesday, October 9, 13

RIAK

20Wednesday, October 9, 13

Riak

• A distributed highly available eventually consistent
highly scalable open source key-value database
written primarily in Erlang.

21Wednesday, October 9, 13

Riak

• Modeled after Amazon Dynamo

• see Andy Gross's "Dynamo, Five Years Later" for details
https://speakerdeck.com/argv0/dynamo-five-years-later

• Also provides MapReduce, secondary indexes, and full-
text search

• Built for operational ease

22Wednesday, October 9, 13

https://speakerdeck.com/argv0/dynamo-five-years-later
https://speakerdeck.com/argv0/dynamo-five-years-later

Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

23Wednesday, October 9, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

24Wednesday, October 9, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

25Wednesday, October 9, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

26Wednesday, October 9, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

Erlang parts

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

27Wednesday, October 9, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Cluster

node 0

node 1

node 2

node 3

28Wednesday, October 9, 13

Distributing Data

• Riak uses consistent hashing to spread
data across the cluster

• Minimizes remapping of keys when
number of nodes changes

• Spreads data evenly and minimizes
hotspots

node 0

node 1

node 2

node 3

29Wednesday, October 9, 13

Consistent Hashing

• Riak uses SHA-1 as a hash function

• Treats its 160-bit value space as a ring

• Divides the ring into partitions called "virtual
nodes" or vnodes (default 64)

• Each vnode claims a portion of the ring space

• Each physical node in the cluster hosts
multiple vnodes

node 0

node 1

node 2

node 3

30Wednesday, October 9, 13

Hash Ring

2160 0

2160/4

2160/2

3*2160/4

node 0

node 1

node 2

node 3

31Wednesday, October 9, 13

Hash Ring

node 0

node 1

node 2

node 3

bucket key

32Wednesday, October 9, 13

N/R/W Values

• N = number of replicas to store (default 3, can be set
per bucket)

• R = read quorum = number of replica responses needed
for a successful read (can be specified per-request)

• W = write quorum = number of replica responses
needed for a successful write (can be specified per-
request)

33Wednesday, October 9, 13

for details see http://docs.basho.com/riak/1.3.1/tutorials/fast-track/Tunable-CAP-Controls-in-Riak/

node 0

node 1

node 2

node 3

N/R/W Values

34Wednesday, October 9, 13

http://docs.basho.com/riak/1.3.1/tutorials/fast-track/Tunable-CAP-Controls-in-Riak/
http://docs.basho.com/riak/1.3.1/tutorials/fast-track/Tunable-CAP-Controls-in-Riak/

N/R/W Values

35Wednesday, October 9, 13

Implementing Consistent
Hashing

• Erlang's crypto module integration with OpenSSL
provides the SHA-1 function

• Hash values are 160 bits

• But that's OK, Erlang's integers are infinite precision

• And Erlang binaries store these large values efficiently

36Wednesday, October 9, 13

Implementing Consistent
Hashing

37Wednesday, October 9, 13

Implementing Consistent
Hashing

38Wednesday, October 9, 13

Implementing Consistent
Hashing

39Wednesday, October 9, 13

Implementing Consistent
Hashing

40Wednesday, October 9, 13

Implementing Consistent
Hashing

41Wednesday, October 9, 13

Implementing Consistent
Hashing

42Wednesday, October 9, 13

Riak's Ring

43Wednesday, October 9, 13

Riak's Ring

44Wednesday, October 9, 13

Riak's Ring

45Wednesday, October 9, 13

Riak's Ring

46Wednesday, October 9, 13

Riak's Ring

47Wednesday, October 9, 13

Ring State

• All nodes in a Riak cluster are peers, no masters or
slaves

• Nodes exchange their understanding of ring state via a
gossip protocol

48Wednesday, October 9, 13

Distributed Erlang

• Erlang has distribution built in — it's required for
supporting multiple nodes for reliability

• By default Erlang nodes form a mesh, every node knows
about every other node

• Riak uses this for intra-cluster communication

49Wednesday, October 9, 13

Distributed Erlang

• Riak lets you simulate a multi-node installment
on a single machine, nice for development

• "make devrel" or "make stagedevrel" in a riak
repository clone (git://github.com/basho/riak.git)

• Let's assume we have nodes dev1, dev2, and
dev3 running in a cluster, nothing on the 4th
node yet

• Instead of starting riak, let's start the 4th node
as just a plain distributed erlang node

node 0

node 1

node 2

node 3

50Wednesday, October 9, 13

Distributed Erlang

51Wednesday, October 9, 13

Distributed Erlang

52Wednesday, October 9, 13

Distributed Erlang

53Wednesday, October 9, 13

Distributed Erlang

54Wednesday, October 9, 13

Distributed Erlang

55Wednesday, October 9, 13

Distributed Erlang Mesh

node 0

node 1

node 2

node 3

• Nodes talk to each other
occasionally to check
liveness

• Mesh approach makes it
easy to set up a cluster

• But communication
overhead means it
doesn't scale to large
clusters > 150 nodes
(yet)

56Wednesday, October 9, 13

Gossip

• Riak nodes are peers, there's no master

• But the ring has state, such as what vnodes each node
has claimed

• Nodes periodically send their understanding of the ring
state to other randomly chosen nodes

• Riak gossip module also provides an API for sending
ring state to specific nodes

57Wednesday, October 9, 13

Control Vs. Data
• Distributed Erlang: good for control plane, not so good

for data plane

• Sending large data can cause busy distribution ports
and head-of-line blocking

• Use TCP, UDP, etc. directly for data plane traffic

• Don't mix control plane and data plane traffic

• unfortunately Riak currently still does this in a few
places

58Wednesday, October 9, 13

Riak Core

Riak Core

Riak KV

Bitcask eLevelDB Memory Multi

Riak API

Riak Clients

•consistent
 hashing
•vector clocks
•sloppy quorums

•gossip protocols
•virtual nodes
 (vnodes)
•hinted handoff

59Wednesday, October 9, 13

N/R/W Values

60Wednesday, October 9, 13

Hinted Handoff

• Fallback vnode holds data for unavailable primary vnode

• Fallback vnode keeps checking for availability of primary
vnode

• Once primary vnode becomes available, fallback hands
off data to it

• Fallback vnodes are started as needed, thanks to Erlang
lightweight processes

61Wednesday, October 9, 13

Read Repair

• If a read detects a vnode with stale data, it is repaired
via asynchronous update

• Helps implement eventual consistency

• Riak supports active anti-entropy (AAE) to actively repair
stale values

62Wednesday, October 9, 13

Core Protocols
• Gossip, handoff, read repair, etc. all require intra-

cluster protocols

• Erlang distribution and other features help significantly
with protocol implementations

• Erlang monitors allow processes and nodes to watch
each other while interacting

• A monitoring process/node is notified if a monitored
process/node dies, great for aborting failed
interactions

63Wednesday, October 9, 13

Binary Handling
• Erlang's binaries make working with network packets

easy

• For example, deconstructing a TCP message (from
Cesarini & Thompson “Erlang Programming”)

source: http://en.wikipedia.org/wiki/Transmission_Control_Protocol

64Wednesday, October 9, 13

Binary Handling

65Wednesday, October 9, 13

TCP header fields

Binary Handling

66Wednesday, October 9, 13

TCP data payload

Binary Handling

67Wednesday, October 9, 13

Binary Handling

68Wednesday, October 9, 13

• OTP provides libraries of standard modules

• And also behaviors: implementations of common
patterns for concurrent, distributed, fault-tolerant
Erlang apps

Protocols With OTP

69Wednesday, October 9, 13

OTP Behavior Modules

• A behavior is similar to an abstract base class in OO
terms, providing:

• a message handling tail-call optimized loop

• integration with underlying OTP system for code
upgrade, tracing, process management, etc.

70Wednesday, October 9, 13

OTP Behaviors

• application: plugs into Erlang application controller

• supervisor: manages and monitors worker processes

• gen_server: server process framework

• gen_fsm: finite state machine framework

• gen_event: event handling framework

71Wednesday, October 9, 13

Gen_server

• Generic server behavior for handling messages

• Supports server-like components, distributed or not

• “Business logic” lives in app-specific callback module

• Maintains state in a tail-call optimized receive loop

72Wednesday, October 9, 13

Gen_fsm

• Behavior supporting finite state machines (FSMs)

• Tail-call loop for maintaining state, like gen_server

• States and events handled by app-specific callback
module

• Allows events to be sent into an FSM either sync or
async

73Wednesday, October 9, 13

Riak And Gen_*

• Riak makes heavy use of these behaviors, e.g.:

• FSMs for get and put operations

• Vnode FSM

• Gossip module is a gen_server

74Wednesday, October 9, 13

Behavior Benefits

• Standardized frameworks providing common patterns,
common vocabulary

• Used by pretty much all non-trivial Erlang systems

• Erlang developers understand them, know how to read
them

75Wednesday, October 9, 13

Behavior Benefits

• Separate a lot of messaging, debugging, tracing
support, system concerns from business logic

OTP
gen_*

module

App
callback
module

incoming
messages

outgoing
messages

callback

replies

system application

76Wednesday, October 9, 13

Application Behavior
• Provides an entry point for an OTP-compliant app

• Allows multiple Erlang components to be combined into
a system

• Erlang apps can declare their dependencies on other
apps

• Erlang runtime starts apps in reverse dependency order

• A running Riak system comprises about 30 different
applications

77Wednesday, October 9, 13

App Startup Sequence

• Hierarchical sequence

• Erlang system application controller starts the app

• App starts supervisor(s)

• Each supervisor starts workers

• Workers are typically instances of OTP behaviors

78Wednesday, October 9, 13

Workers & Supervisors

• Workers implement application logic

• Supervisors:

• start child workers and sub-supervisors

• link to the children and trap child process exits

• take action when a child dies, typically restarting one
or more children

79Wednesday, October 9, 13

Let It Crash

• In his doctoral thesis, Joe Armstrong, creator of Erlang,
wrote:

• Let some other process do the error recovery.

• If you can’t do what you want to do, die.

• Let it crash.

• Do not program defensively.
see http://www.erlang.org/download/armstrong_thesis_2003.pdf

80Wednesday, October 9, 13

http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf

Application, Supervisors,
Workers

Application

Workers

Supervisors

Simple
Core

81Wednesday, October 9, 13

Erlang/OTP System Facilities

• Get status of an OTP process

• Get process info for any process

• Trace function calls, messages

• Releases

• Live upgrades

82Wednesday, October 9, 13

INTEGRATION

83Wednesday, October 9, 13

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

Riak Architecture

84Wednesday, October 9, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

Riak Architecture

Erlang on top

C/C++ on the bottom

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/
85Wednesday, October 9, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Linking With C/C++

• Erlang provides the ability to dynamically link C/C++
libraries into the VM

• One way is through the driver interface

• for example the VM supplies network and file system
facilities via drivers

• Another way is through Native Implemented Functions
(NIFs)

86Wednesday, October 9, 13

Native Implemented Functions
(NIFs)

• Lets C/C++ functions operate as Erlang functions

• Erlang module serves as entry point

• When module loads it dynamically loads its NIF shared
library, overlaying its Erlang functions with C/C++
replacements

87Wednesday, October 9, 13

Example: Eleveldb

• NIF wrapper around Google's LevelDB C++ database

• Erlang interface plugs in underneath Riak KV

88Wednesday, October 9, 13

Example: Eleveldb

89Wednesday, October 9, 13

Example: Eleveldb

90Wednesday, October 9, 13

Example: Eleveldb

91Wednesday, October 9, 13

NIF Features

• Easy to convert arguments and return values between
C/C++ and Erlang

• Ref count binaries to avoid data copying where needed

• Portable interface to OS multithreading capabilities
(threads, mutexes, cond vars, etc.)

92Wednesday, October 9, 13

NIF Caveats

• Crashes in your linked-in C/C++ kill the whole VM

• Lesson: use NIFs and drivers only when needed, and
don't write crappy code

93Wednesday, October 9, 13

NIF Caveats

• NIF calls execute within a VM scheduler thread

• If the NIF blocks, the scheduler thread blocks

• THIS IS VERY BAD

• NIFs should block for no more than 1 millisecond

94Wednesday, October 9, 13

NIF Caveats
• In 2012 Basho found "scheduler anomalies" where

• the VM would put most of its schedulers to sleep, by
design, under low load

• but would fail to wake them up as load increased

• Caused by NIF and BIF calls that were taking multiple
seconds in some cases

• Lesson: put long-running activities in their own threads or
break up long calls into multiple calls

• Or wait for "dirty" schedulers, targeted for Erlang R17

95Wednesday, October 9, 13

TESTING

96Wednesday, October 9, 13

Eunit

• Erlang's unit testing facility

• Support for asserting test results, grouping tests, setup
and teardown, etc.

• Used heavily in Riak

97Wednesday, October 9, 13

QuickCheck
• Property-based testing product from Quviq, invented by

John Hughes (a co-inventor of Haskell)

• Create a model of the software under test

• QuickCheck runs randomly-generated tests against it

• When it finds a failure, QuickCheck automatically
shrinks the testcase to a minimum for easier debugging

• Used heavily in Riak, especially to test various protocols
and interactions

98Wednesday, October 9, 13

BUILD AND RELEASE

99Wednesday, October 9, 13

Application Directories

• Erlang applications tend to use a standard
directory layout

• Certain tools expect to find this layout

100Wednesday, October 9, 13

Rebar

• A tool created by Dave "Dizzy" Smith (formerly of Basho)
to manage Erlang apps

• Manages dependencies, builds, runs tests, generates
releases

• Now the de facto standard Erlang build and release tool

101Wednesday, October 9, 13

MISCELLANEOUS

102Wednesday, October 9, 13

Miscellaneous

• Memory

• Erlang shell

• Hot code loading

• VM knowledge

• Finding Erlang developers

103Wednesday, October 9, 13

Memory

• Process message queues have no limits, can cause out-
of-memory conditions if a process can't keep up

• By design, VM dies if it runs out of memory

• Apps like Riak run Erlang memory monitors that help
log and notify about looming out-of-memory conditions

104Wednesday, October 9, 13

Interactive Erlang Shell

• Hard to imagine working without it

• Huge help during development and debug

105Wednesday, October 9, 13

Hot Code Loading

• It really works

• Use it all the time during development

• We've also used it to load repaired code into live
production systems for customers (with their permission
of course)

106Wednesday, October 9, 13

VM Knowledge

• Running high-scale high-load systems like Riak requires
knowledge of Erlang VM internals

• No different than working with the JVM or other
language runtimes

107Wednesday, October 9, 13

Finding Erlang Devs

• Erlang is easy to learn

• Not really a problem to hire Erlang programmers

• Basho hires great developers, those who need to learn
Erlang just do it

• BTW we're hiring, see
http://bashojobs.theresumator.com

108Wednesday, October 9, 13

http://bashojobs.theresumator.com
http://bashojobs.theresumator.com

SUMMARY

109Wednesday, October 9, 13

Summary: Why Erlang For Riak?

• Distributed systems features

• sort of a "distributed systems DSL"

• Concurrency features

• Reliability features

• Runtime introspection capabilities

• Individual developer and team productivity

110Wednesday, October 9, 13

For More Erlang Info

111Wednesday, October 9, 13

For More Riak Info

• "A Little Riak Book" by Basho's Eric Redmond
http://littleriakbook.com

• Mathias Meyer's "Riak Handbook"
http://riakhandbook.com

• Eric Redmond's "Seven Databases in Seven Weeks"
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks

112Wednesday, October 9, 13

http://littleriakbook.com
http://littleriakbook.com
http://riakhandbook.com
http://riakhandbook.com
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks

For More Riak Info

• Basho documentation
http://docs.basho.com

• Basho blog
http://basho.com/blog/

• Basho's github repositories
https://github.com/basho
https://github.com/basho-labs

113Wednesday, October 9, 13

http://basho.com
http://basho.com
http://basho.com/blog/
http://basho.com/blog/
https://github.com/basho
https://github.com/basho
https://github.com/basho-labs
https://github.com/basho-labs

THANKS

http://basho.com
@stevevinoski

114Wednesday, October 9, 13

http://basho.com
http://basho.com

