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ERLANG
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• 1980s: Ericsson Computer Science Laboratories (CSL) 
sought better ways to program telecom switches

• Joe Armstrong created Erlang based on Prolog, with 
influence from ML, Ada, Smalltalk, other languages

• Open sourced in 1998, available from http://erlang.org

• Ericsson develops and maintains it with community help

• Latest production release: R16B (Feb 2013)

Erlang
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• Large number of concurrent activities

• Large software systems distributed across multiple 
computers

• Continuous operation for years

• Live updates and maintenance

• Tolerance for both hardware and software faults

Ericsson Telecom Switch 
Requirements
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• Large number of concurrent activities

• Large software systems distributed across multiple 
computers

• Continuous operation for years

• Live updates and maintenance

• Tolerance for both hardware and software faults

Today’s Data/Web/Cloud/
Service Apps
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CONCURRENCY
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• Erlang processes are very lightweight, much lighter than 
OS threads

• Hundreds of thousands or even millions of processes 
per Erlang VM instance

They Come For The 
Concurrency...
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• Isolation: Erlang processes communicate only via 
message passing

• Distribution: Erlang process model works across nodes

• Linking/supervision/monitoring: allow an Erlang 
process to take action when another fails

...But They Stay For The 
Reliability
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Erlang Process Architecture
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A Small Language

• Erlang has just a few elements: numbers, atoms, tuples, 
lists, records, binaries, functions, modules

• Variables are immutable, no globals

• Flow control via pattern matching, case, if, try-catch, 
recursion, messages
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Concurrency Primitives

• No mutexes, condition variables, or other error-prone 
concurrency constructs

• All Erlang code runs within some process, always

• processes are not “extra” like threads in other 
languages
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• spawn: create a new Erlang process

• ! (exclamation point) or send: send a message to another 
Erlang process, even on another node

• Messages can be any Erlang term

• Messages from A to B arrive in the order sent

Concurrency Primitives

Pid1 ! ok,
Pid2 ! [{first, "John"},{last,"Doe"}].
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• Each process has a message queue

• receive: receive a message from another Erlang process

• Selective receive allows receiving specific messages from 
anywhere within the message queue

Concurrency Primitives

receive
    {ok, Reply} ->
        do_something(Reply);
    {error, Error} ->
        uh_oh(Error)
end.
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Erlang Immutability

• Erlang assignment is pattern matching, not mutation

• Unbound variables get the value of the right-hand side 
and then can't be changed
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Erlang Immutability
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Erlang Immutability
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Erlang Immutability
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Erlang Immutability
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Easy To Learn

• Language size means developers become proficient 
quickly

• Code is typically brief, easy to read, easy to understand

• Erlang's Open Telecom Platform (OTP) frameworks solve 
recurring problems across multiple domains
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RIAK
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Riak

• A distributed highly available eventually consistent
highly scalable open source key-value database
written primarily in Erlang.
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Riak

• Modeled after Amazon Dynamo

• see Andy Gross's "Dynamo, Five Years Later" for details 
https://speakerdeck.com/argv0/dynamo-five-years-later

• Also provides MapReduce, secondary indexes, and full-
text search

• Built for operational ease
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Riak Architecture
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image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

23Wednesday, October 9, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/


Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

24Wednesday, October 9, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/


Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

25Wednesday, October 9, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/


Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

26Wednesday, October 9, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/


Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

Erlang parts

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

27Wednesday, October 9, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/


Riak Cluster

node 0

node 1

node 2

node 3
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Distributing Data

• Riak uses consistent hashing to spread 
data across the cluster

• Minimizes remapping of keys when 
number of nodes changes

• Spreads data evenly and minimizes 
hotspots

node 0

node 1

node 2

node 3
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Consistent Hashing

• Riak uses SHA-1 as a hash function

• Treats its 160-bit value space as a ring

• Divides the ring into partitions called "virtual 
nodes" or vnodes (default 64)

• Each vnode claims a portion of the ring space

• Each physical node in the cluster hosts 
multiple vnodes

node 0

node 1

node 2

node 3
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Hash Ring

2160 0
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Hash Ring

node 0

node 1

node 2

node 3

bucket key
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N/R/W Values

• N = number of replicas to store (default 3, can be set 
per bucket)

• R = read quorum = number of replica responses needed 
for a successful read (can be specified per-request)

• W = write quorum = number of replica responses 
needed for a successful write (can be specified per-
request)
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for details see http://docs.basho.com/riak/1.3.1/tutorials/fast-track/Tunable-CAP-Controls-in-Riak/

node 0

node 1

node 2

node 3

N/R/W Values
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N/R/W Values
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Implementing Consistent 
Hashing

• Erlang's crypto module integration with OpenSSL 
provides the SHA-1 function

• Hash values are 160 bits

• But that's OK, Erlang's integers are infinite precision

• And Erlang binaries store these large values efficiently
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Implementing Consistent 
Hashing
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Implementing Consistent 
Hashing
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Implementing Consistent 
Hashing
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Implementing Consistent 
Hashing
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Implementing Consistent 
Hashing
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Implementing Consistent 
Hashing
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Riak's Ring
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Riak's Ring
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Riak's Ring
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Riak's Ring
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Riak's Ring
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Ring State

• All nodes in a Riak cluster are peers, no masters or 
slaves

• Nodes exchange their understanding of ring state via a 
gossip protocol
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Distributed Erlang

• Erlang has distribution built in — it's required for 
supporting multiple nodes for reliability

• By default Erlang nodes form a mesh, every node knows 
about every other node

• Riak uses this for intra-cluster communication
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Distributed Erlang

• Riak lets you simulate a multi-node installment 
on a single machine, nice for development

• "make devrel" or "make stagedevrel" in a riak 
repository clone (git://github.com/basho/riak.git)

• Let's assume we have nodes dev1, dev2, and 
dev3 running in a cluster, nothing on the 4th 
node yet

• Instead of starting riak, let's start the 4th node 
as just a plain distributed erlang node

node 0

node 1

node 2

node 3
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Distributed Erlang
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Distributed Erlang
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Distributed Erlang
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Distributed Erlang
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Distributed Erlang
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Distributed Erlang Mesh

node 0

node 1

node 2

node 3

• Nodes talk to each other 
occasionally to check 
liveness

• Mesh approach makes it 
easy to set up a cluster

• But communication 
overhead means it 
doesn't scale to large 
clusters > 150 nodes 
(yet)
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Gossip

• Riak nodes are peers, there's no master

• But the ring has state, such as what vnodes each node 
has claimed

• Nodes periodically send their understanding of the ring 
state to other randomly chosen nodes

• Riak gossip module also provides an API for sending 
ring state to specific nodes
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Control Vs. Data
• Distributed Erlang: good for control plane, not so good 

for data plane

• Sending large data can cause busy distribution ports 
and head-of-line blocking

• Use TCP, UDP, etc. directly for data plane traffic

• Don't mix control plane and data plane traffic

• unfortunately Riak currently still does this in a few 
places
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Riak Core

Riak Core

Riak KV

Bitcask eLevelDB Memory Multi

Riak API

Riak Clients

•consistent
  hashing
•vector clocks
•sloppy quorums

•gossip protocols
•virtual nodes
  (vnodes)
•hinted handoff
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N/R/W Values
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Hinted Handoff

• Fallback vnode holds data for unavailable primary vnode

• Fallback vnode keeps checking for availability of primary 
vnode

• Once primary vnode becomes available, fallback hands 
off data to it

• Fallback vnodes are started as needed, thanks to Erlang 
lightweight processes
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Read Repair

• If a read detects a vnode with stale data, it is repaired 
via asynchronous update

• Helps implement eventual consistency

• Riak supports active anti-entropy (AAE) to actively repair 
stale values
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Core Protocols
• Gossip, handoff, read repair, etc. all require intra-

cluster protocols

• Erlang distribution and other features help significantly 
with protocol implementations

• Erlang monitors allow processes and nodes to watch 
each other while interacting

• A monitoring process/node is notified if a monitored 
process/node dies, great for aborting failed 
interactions
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Binary Handling
• Erlang's binaries make working with network packets 

easy

• For example, deconstructing a TCP message (from 
Cesarini & Thompson “Erlang Programming”)

source: http://en.wikipedia.org/wiki/Transmission_Control_Protocol
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Binary Handling
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TCP header fields

Binary Handling
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TCP data payload

Binary Handling
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Binary Handling
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• OTP provides libraries of standard modules

• And also behaviors: implementations of common 
patterns for concurrent, distributed, fault-tolerant 
Erlang apps

Protocols With OTP
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OTP Behavior Modules

• A behavior is similar to an abstract base class in OO 
terms, providing:

• a message handling tail-call optimized loop

• integration with underlying OTP system for code 
upgrade, tracing, process management, etc.
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OTP Behaviors

• application: plugs into Erlang application controller

• supervisor: manages and monitors worker processes

• gen_server: server process framework

• gen_fsm: finite state machine framework

• gen_event: event handling framework
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Gen_server

• Generic server behavior for handling messages

• Supports server-like components, distributed or not

• “Business logic” lives in app-specific callback module

• Maintains state in a tail-call optimized receive loop
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Gen_fsm

• Behavior supporting finite state machines (FSMs)

• Tail-call loop for maintaining state, like gen_server

• States and events handled by app-specific callback 
module

• Allows events to be sent into an FSM either sync or 
async
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Riak And Gen_*

• Riak makes heavy use of these behaviors, e.g.:

• FSMs for get and put operations

• Vnode FSM

• Gossip module is a gen_server
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Behavior Benefits

• Standardized frameworks providing common patterns, 
common vocabulary

• Used by pretty much all non-trivial Erlang systems

• Erlang developers understand them, know how to read 
them
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Behavior Benefits

• Separate a lot of messaging, debugging, tracing 
support, system concerns from business logic

OTP
gen_*

module

App
callback
module

incoming
messages

outgoing
messages

callback

replies

system application
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Application Behavior
• Provides an entry point for an OTP-compliant app

• Allows multiple Erlang components to be combined into 
a system

• Erlang apps can declare their dependencies on other 
apps

• Erlang runtime starts apps in reverse dependency order

• A running Riak system comprises about 30 different 
applications
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App Startup Sequence

• Hierarchical sequence

• Erlang system application controller starts the app

• App starts supervisor(s)

• Each supervisor starts workers

• Workers are typically instances of OTP behaviors
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Workers & Supervisors

• Workers implement application logic

• Supervisors:

• start child workers and sub-supervisors

• link to the children and trap child process exits

• take action when a child dies, typically restarting one 
or more children
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Let It Crash

• In his doctoral thesis, Joe Armstrong, creator of Erlang, 
wrote:

• Let some other process do the error recovery.

• If you can’t do what you want to do, die.

• Let it crash.

• Do not program defensively.
see http://www.erlang.org/download/armstrong_thesis_2003.pdf
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Application, Supervisors, 
Workers

Application

Workers

Supervisors

Simple
Core
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Erlang/OTP System Facilities

• Get status of an OTP process

• Get process info for any process

• Trace function calls, messages

• Releases

• Live upgrades
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INTEGRATION
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Riak Architecture
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Linking With C/C++

• Erlang provides the ability to dynamically link C/C++ 
libraries into the VM

• One way is through the driver interface

• for example the VM supplies network and file system 
facilities via drivers

• Another way is through Native Implemented Functions 
(NIFs)
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Native Implemented Functions 
(NIFs)

• Lets C/C++ functions operate as Erlang functions

• Erlang module serves as entry point

• When module loads it dynamically loads its NIF shared 
library, overlaying its Erlang functions with C/C++ 
replacements

87Wednesday, October 9, 13



Example: Eleveldb

• NIF wrapper around Google's LevelDB C++ database

• Erlang interface plugs in underneath Riak KV
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Example: Eleveldb
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Example: Eleveldb
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Example: Eleveldb
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NIF Features

• Easy to convert arguments and return values between
C/C++ and Erlang

• Ref count binaries to avoid data copying where needed

• Portable interface to OS multithreading capabilities 
(threads, mutexes, cond vars, etc.)
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NIF Caveats

• Crashes in your linked-in C/C++ kill the whole VM

• Lesson: use NIFs and drivers only when needed, and 
don't write crappy code
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NIF Caveats

• NIF calls execute within a VM scheduler thread

• If the NIF blocks, the scheduler thread blocks

• THIS IS VERY BAD

• NIFs should block for no more than 1 millisecond
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NIF Caveats
• In 2012 Basho found "scheduler anomalies" where

• the VM would put most of its schedulers to sleep, by 
design, under low load

• but would fail to wake them up as load increased

• Caused by NIF and BIF calls that were taking multiple 
seconds in some cases

• Lesson: put long-running activities in their own threads or 
break up long calls into multiple calls

• Or wait for "dirty" schedulers, targeted for Erlang R17
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TESTING
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Eunit

• Erlang's unit testing facility

• Support for asserting test results, grouping tests, setup 
and teardown, etc.

• Used heavily in Riak
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QuickCheck
• Property-based testing product from Quviq, invented by 

John Hughes (a co-inventor of Haskell)

• Create a model of the software under test

• QuickCheck runs randomly-generated tests against it

• When it finds a failure, QuickCheck automatically 
shrinks the testcase to a minimum for easier debugging

• Used heavily in Riak, especially to test various protocols 
and interactions
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BUILD AND RELEASE
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Application Directories

• Erlang applications tend to use a standard 
directory layout

• Certain tools expect to find this layout
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Rebar

• A tool created by Dave "Dizzy" Smith (formerly of Basho) 
to manage Erlang apps

• Manages dependencies, builds, runs tests, generates 
releases

• Now the de facto standard Erlang build and release tool
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MISCELLANEOUS
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Miscellaneous

• Memory

• Erlang shell

• Hot code loading

• VM knowledge

• Finding Erlang developers
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Memory

• Process message queues have no limits, can cause out-
of-memory conditions if a process can't keep up

• By design, VM dies if it runs out of memory

• Apps like Riak run Erlang memory monitors that help 
log and notify about looming out-of-memory conditions
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Interactive Erlang Shell

• Hard to imagine working without it

• Huge help during development and debug
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Hot Code Loading

• It really works

• Use it all the time during development

• We've also used it to load repaired code into live 
production systems for customers (with their permission 
of course)
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VM Knowledge

• Running high-scale high-load systems like Riak requires 
knowledge of Erlang VM internals

• No different than working with the JVM or other 
language runtimes
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Finding Erlang Devs

• Erlang is easy to learn

• Not really a problem to hire Erlang programmers

• Basho hires great developers, those who need to learn 
Erlang just do it

• BTW we're hiring, see
http://bashojobs.theresumator.com
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SUMMARY
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Summary: Why Erlang For Riak?

• Distributed systems features

• sort of a "distributed systems DSL"

• Concurrency features

• Reliability features

• Runtime introspection capabilities

• Individual developer and team productivity
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For More Erlang Info
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For More Riak Info

• "A Little Riak Book" by Basho's Eric Redmond
http://littleriakbook.com

• Mathias Meyer's "Riak Handbook"
http://riakhandbook.com

• Eric Redmond's "Seven Databases in Seven Weeks"
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks
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For More Riak Info

• Basho documentation
http://docs.basho.com

• Basho blog
http://basho.com/blog/

• Basho's github repositories
https://github.com/basho
https://github.com/basho-labs
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THANKS

http://basho.com
@stevevinoski
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