
Speed and Scale: How to get there.

Adrian Cockcroft @adrianco May 2014

‹#› | Battery Ventures

‹#› | Battery Ventures

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010 It only works for
‘Unicorns’ like

Netflix”
– 2011

“We’d like to do  
that but can’t”

– 2012

“We’re on our way using
Netflix OSS code”

– 2013

‹#› | Battery Ventures

What I learned from my time at Netflix
● Speed wins in the marketplace
● Remove friction from product development
● High trust, low process, no hand-offs between teams
● Freedom and responsibility culture
● Don’t do your own undifferentiated heavy lifting
● Use simple patterns automated by tooling
● Self service cloud makes impossible things instant

‹#› | Battery Ventures

Enterprise IT Adoption of Cloud

By Simon Wardley http://enterpriseitadoption.com/

Now
%*&!”

‹#› | Battery Ventures

Speed

‹#› | Battery Ventures

Innovation

‹#› | Battery Ventures

New ideas

‹#› | Battery Ventures

New products

‹#› | Battery Ventures

What separates
incumbents from

disruptors?

‹#› | Battery Ventures

Assumptions

‹#› | Battery Ventures

Optimizations

‹#› | Battery Ventures

“It isn't what we don't know
that gives us trouble, it's

what we know that ain't so.”
!

Will Rogers

http://www.brainyquote.com/quotes/quotes/w/willrogers385286.html

‹#› | Battery Ventures

Incumbents
follow the $$$

Market size lags disruption because high price products are replaced by low priced products

‹#› | Battery Ventures

Disruptors
find what used to be

expensive

‹#› | Battery Ventures

Learn to waste them
to save money

elsewhere

‹#› | Battery Ventures

Examples

‹#› | Battery Ventures

Solid State Disk

Example

‹#› | Battery Ventures

Storage systems
assume random

reads are expensive
Decades of filesystems and storage array development based on spinning rust

‹#› | Battery Ventures

RR is free
Immutable writes

Log-merge
SSD works best for random reads and sequential writes. Bad for updates.

‹#› | Battery Ventures

SSD packaging
as disk, as PCI card

now as memory DIMM
Each generation reduces overhead and improves price/performance

‹#› | Battery Ventures
Disclosure: Diablo Technologies is a Battery Ventures Portfolio Company
See www.battery.com for a list of portfolio investments

‹#› | Battery Ventures

Traditional vs. Cloud Native Storage Architectures

Business
Logic

Database
Master

Fabric

Storage
Arrays

Database
Slave

Fabric

Storage
Arrays

Business
Logic

Cassandra
Zone A nodes

Cassandra
Zone B nodes

Cassandra
Zone C nodes

Cloud Object
Store Backups

SSDs inside
ephemeral
instances
disrupt an
entire industry

SSDs inside
arrays disrupt
incumbent
suppliers

‹#› | Battery Ventures

How to Scale Storage Beyond Ludicrous

● Cassandra scalability

● Linear scale up benchmarked and seen in production

● Hundreds of nodes per cluster in common use today

● Thousands of nodes per cluster actively being tested and used

● Cassandra scale using high end AWS storage instances

● EC2 i2.8xlarge - over 300,000 iops read or write, 6.4TB of SSD

● 100 nodes = 30 million iops and 640 TB - Ludicrous

● 1000 nodes = 300 million iops and 6.4 PB - Plaid!

http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html

‹#› | Battery Ventures

Disruptor
Cassandra

Perfect match for SSD, no write amplification, no updates, scales to plaid

‹#› | Battery Ventures

Product
Development

Another disruptive example

‹#› | Battery Ventures

Assumption:
Process prevents

problems
Another disruptive example

‹#› | Battery Ventures

Non-Cloud Product Development

Months before you find out whether the product meets the need

Hardware provisioning is undifferentiated heavy lifting – replace it with IaaS

Business
Need
• Documents
• Weeks

Approval
Process
• Meetings
• Weeks

Hardware
Purchase
• Negotiations
• Weeks

Software
Development
• Specifications
• Weeks

Deployment and
Testing
• Reports
• Weeks

Customer
Feedback
• It sucks!
• Weeks

IaaS
Cloud

‹#› | Battery Ventures

Process Hand-Off Steps for Product Development on IaaS

Product Manager

Development Team

QA Integration Team

Operations Deploy
Team

BI Analytics Team

‹#› | Battery Ventures

IaaS Based Product Development

Weeks before you find out whether the product meets the need

Software provisioning is undifferentiated heavy lifting – replace it with PaaS

Business Need
• Documents
• Weeks

Software Development
• Specifications
• Weeks

Deployment and Testing
• Reports
• Days

Customer Feedback
• It sucks!
• Days

PaaS
Cloud

etc…

‹#› | Battery Ventures

Process Hand-Off Steps for Feature Development on PaaS

Product Manager

Developer

BI Analytics Team

‹#› | Battery Ventures

PaaS Based Product Feature Development

Days before you find out whether the feature meets the need

Building your own business apps is undifferentiated heavy lifting – use SaaS

Business Need
• Discussions
• Days

Software Development
• Code
• Days

Customer Feedback
• Fix this Bit!
• Hours

SaaS/
BPaaS
Cloud

etc…

‹#› | Battery Ventures

SaaS Based Business App Development

Hours before you find out whether the feature meets the need

Business Need
•GUI Builder
•Hours

Customer Feedback
•Fix this bit!
•Seconds

and thousands more…

‹#› | Battery Ventures

What Happened?

Rate of change
increased

Cost and size and
risk of change

reduced

‹#› | Battery Ventures

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan
Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery on

Cloud

‹#› | Battery Ventures

Note: Non-Destructive Production Updates

● “Immutable Code” Service Pattern

● Existing services are unchanged, old code remains in service

● New code deploys as a new service group

● No impact to production until traffic routing changes

● A|B Tests, Feature Flags and Version Routing control traffic

● First users in the test cell are the developer and test engineers

● A cohort of users is added looking for measurable improvement

● Finally make default for everyone, keeping old code for a while

‹#› | Battery Ventures

Disruptor
Continuous Delivery

Compute capacity is an ephemeral commodity, learn to waste it to save time and get agility

‹#› | Battery Ventures

Development and
Operations

Another disruptive example, if you assume they don’t mix…

‹#› | Battery Ventures

Developers make code

‹#› | Battery Ventures

Operations run code

‹#› | Battery Ventures

It can take weeks to get
a VM after a developer

files a ticket…

‹#› | Battery Ventures

But if operations is a
self service API…

‹#› | Battery Ventures

Developers run their
own code

‹#› | Battery Ventures

Developers are on call

‹#› | Battery Ventures

Developers have
freedom

‹#› | Battery Ventures

Developers have
incentives to be

responsible

Avoids the externalities of over-dependence on operations to fix everything

‹#› | Battery Ventures

Less down time

With the right incentives and tooling developers write code that scales and doesn't break

‹#› | Battery Ventures

No meetings

Developers end up spending more time developing than when they had to keep explaining their code to ops

‹#› | Battery Ventures

DevOps is a re-org, not
a new team to hire

For most companies, the cultural transformation needed to do DevOps is the blocker

‹#› | Battery Ventures

Disruptor
High Trust Culture

DevOps

Give up central coordination and control, to get speed and align incentives

‹#› | Battery Ventures

It’s what you know that isn’t so…

● Make your assumptions explicit
● Extrapolate trends to the limit
● Listen to non-customers
● Follow developer adoption, not IT spend
● Map evolution of products to services to utilities
● Re-organize your teams for speed of execution

‹#› | Battery Ventures

How do we get there?

‹#› | Battery Ventures

"This is the IT swamp draining manual for anyone who is neck deep in alligators.”

‹#› | Battery Ventures

Once you’re out of the swamp, read this…

‹#› | Battery Ventures

Open Source Ecosystems

● The most advanced, scalable and stable code you can get is OSS

● No procurement cycle, fix and extend it yourself

● Github is a developer’s online resume

● Github is also your company’s online resume!

● Extensible platforms create ecosystems

● Give up control to get ubiquity – Apache license

!
Innovate, Leverage and Commoditize

‹#› | Battery Ventures

Cloud Native for High Availability

● Business logic isolation in stateless micro-services

● Immutable code with instant rollback

● Auto-scaled capacity and deployment updates

● Distributed across availability zones and regions

● De-normalized single function NoSQL data stores

● See over 40 NetflixOSS projects at netflix.github.com

● Get “Technical Indigestion” trying to keep up with techblog.netflix.com

‹#› | Battery Ventures

A Microservice Definition
!

Loosely coupled service oriented
architecture with bounded contexts

See http://en.wikipedia.org/wiki/Domain-driven_design for discussion of bounded contexts

‹#› | Battery Ventures

Scaling Continuous Delivery Models

● Devs book a train ticket

● Everyone runs the monolith

● Queue for the next train

● Coordination chat session

● Need to learn deploy process

● Copy code to existing servers

● Few concurrent versions

● Tens of monolithic updates/day maximum

● Roll-forward only

● “Done” is released to prod

● Everyone has their own build

● Dev runs their own microservice

● No waiting, no meetings

● API call to update prod timeline

● Automated hands-off deploy

● Immutable code on new servers

● Unlimited concurrent versions

● 100s of independent updates

● Roll-back in seconds

● “Done” is retired from prod

Monolithic Microservices

‹#› | Battery Ventures

Separate Concerns Using Micro-services

● Invert Conway’s Law – teams own service groups and backend stores

●One “verb” per single function micro-service, size doesn’t matter

●One developer independently produces a micro-service

● Each micro-service is it’s own build, avoids trunk conflicts

● Deploy in a container: Tomcat, AMI or Docker, whatever…

● Stateless business logic. Cattle, not pets.

● Stateful cached data access layer can use ephemeral instances

http://en.wikipedia.org/wiki/Conway's_law

‹#› | Battery Ventures

Microservices Development Architecture

● Client libraries
Even if you start with a raw protocol, a client side driver is the end-state
Best strategy is to own your own client libraries from the start

● Multithreading and Non-blocking Calls
Reactive model RxJava uses Observable to hide concurrency cleanly
Netty can be used to get non-blocking I/O speedup over Tomcat container

● Circuit Breakers – See Fluxcapacitor.com for code
NetflixOSS Hystrix, Turbine, Latency Monkey, Ribbon/Karyon
Also look at Finagle/Zipkin from Twitter

‹#› | Battery Ventures

Microservice Datastores

● Book: Refactoring Databases
SchemaSpy to examine schema structure
Denormalization into one datasource per table or materialized view

● Polyglot Persistence
Use a mixture of database technologies, behind REST data access layers
See NetflixOSS Storage Tier as a Service HTTP (staash.com) for MySQL and C*

● CAP – Consistent or Available when Partitioned
Look at Jepsen torture tests for common systems aphyr.com/tags/jepsen
There is no such thing as a consistent distributed system, get over it…

‹#› | Battery Ventures

Strategies for impatient product managers

● Carrot
“This new feature you want will be ready faster as a microservice”

● Stick
“This new feature you want will only be implemented in the new
microservice based system”

● Shiny Object
“Why don’t you concentrate on some other part of the system while we get
the transition done?”

‹#› | Battery Ventures

Monitoring and
Microservices

‹#› | Battery Ventures

Issues with Continuous Delivery and Microservices

● High rate of change
Code pushes can cause floods of new instances and metrics
Short baseline for alert threshold analysis – everything looks unusual

● Ephemeral Configurations
Short lifetimes make it hard to aggregate historical views
Hand tweaked monitoring tools take too much work to keep running

● Microservices with complex calling patterns
End-to-end request flow measurements are very important
Request flow visualizations get overwhelmed

‹#› | Battery Ventures

Microservice Based Architectures

See http://www.slideshare.net/LappleApple/gilt-from-monolith-ruby-app-to-micro-service-scala-service-architecture

From a Gilt Groupe Presentation

‹#› | Battery Ventures

“Death Star” Architecture Diagrams

As visualized by Appdynamics, Boundary.com and Twitter internal tools

Netflix Gilt Groupe (12 of 450) Twitter

‹#› | Battery Ventures

Monitoring Micro-services

● Appdynamics
Instrument the JVM to capture everything including traffic flows
Insert tag for every http request with a header annotation guid
Visualize the over-all flow or the business transaction flow

● Boundary.com and Lyatiss CloudWeaver
Instrument the packet flows across the network
Capture the zone and region config from cloud APIs and tags
Correlate, aggregate and visualize the traffic flows

● Instrumented PaaS Communication Mechanisms
CloudFoundry and Apcera route all traffic through NATS
NetflixOSS ribbon client and karyon server http annotation guid
In-band mechanisms can scale beyond capabilities of centralized tools

Visualizing the request flow

‹#› | Battery Ventures

Continuous Delivery and DevOps Implications

●Changes are smaller but more frequent

● Individual changes are more likely to be broken

●Changes are normally deployed by developers

●Feature flags are used to enable new code

● Instant detection and rollback matters much more

‹#› | Battery Ventures

What’s wrong with measuring in minutes?
Takes too long to see a problem

0

1

2

3

4

5

Minute 1 Minute 2 Minute 3 Minute 4 Minute 5 Minute 6 Minute 7

Metric Threshold

Something broke
at 2m20

40s of failure
didn’t trigger

1st high metric
seen at agent on

instance

1st high metric arrives at
monitoring system

1st high metric
processed
(maybe)

1st high metric
seen on graph

Three datapoints on
user graph so looks

bad at 8m00.

‹#› | Battery Ventures

Whoops! I didn’t mean that! Reverting… 
 

Not cool if it takes 5 minutes to see it failed and 5 more to see a fix 
 No-one notices if it only takes 5 seconds to detect and 5 to see a fix

‹#› | Battery Ventures

Try that again by the second
More confidence more quickly

Threshold

0

1

2

3

4

5

Minute 1 Minute 2 Minute 3 Minute 4 Minute 5 Minute 6 Minute 7

Something broke
at 2m20

Measurable in
1s

1st high metric
seen at agent on

instance

1st high metric arrives at
monitoring system

1st high metric
processed

1st high metric
seen on graph

Three datapoints on
user graph so looks

bad at 2m25.

‹#› | Battery Ventures

NetflixOSS Hystrix / Turbine Circuit Breaker Monitoring

http://techblog.netflix.com/2012/12/hystrix-dashboard-and-turbine.html

Streaming metrics directly from services to a web browser each second

‹#› | Battery Ventures

Latest SaaS Based Monitoring Products

www.vividcortex.com and www.boundary.com

Seeing Problems In Seconds

‹#› | Battery Ventures

Metric to display latency needs to be
less than human attention span (~10s)

‹#› | Battery Ventures

Summary

● Speed wins in the marketplace

● Remove friction from product development

● High trust, low process

● Freedom and responsibility culture

● Don’t do your own undifferentiated heavy lifting

● Simple patterns automated by tooling

● Microservices for speed and availability

‹#› | Battery Ventures

Separation of Concerns 
 

Bounded Contexts

‹#› | Battery Ventures

Any Questions?

● Battery Ventures http://www.battery.com
● Adrian’s Blog http://perfcap.blogspot.com
● Slideshare http://slideshare.com/adriancockcroft
!

● Migrating to Microservices – Qcon London - March 6th, 2014
● Monitorama Opening Keynote Portland OR - May 7th, 2014
● GOTO Chicago Opening Keynote May 20th, 2014
● DevOps Summit at Cloud Expo New York – June 10th, 2014
● Qcon New York – June 11th, 2014
● GOTO Copenhagen/Aarhus – Denmark – Oct 25th, 2014

Disclosure: some of the companies mentioned are Battery Ventures Portfolio Companies
See www.battery.com for a list of portfolio investments

