
Fundamentals of GC Tuning
Charlie Hunt
JVM & Performance Junkie

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 2

Who is this guy?

§ Currently leading a variety of HotSpot JVM projects at Oracle
§ Held various performance architect roles at Oracle, Salesforce.com &

Sun Microsystems
§ Lead author of Java Performance, published Sept 2011

Charlie Hunt

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 3

What to expect

This is not a session about JVM command line options,
i.e. -Xms, -Xmx, -Xmn, -XX:InsertYourFavorite

It’s about understanding the basic concepts to enable you
to reason about tuning a JVM’s GC, and the advantages,
consequences, tradeoffs of those decisions.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 4

The Goal

Ideally, understanding the basic concepts will enable you
to tune any garbage collector.

At a minimum, make better decisions about what actions
to consider taking.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 5

Agenda

§ The Key Performance Attributes

§ High Level Look at Modern JVM GC Architectures

§ Basic Concepts

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 6

The Performance Attributes

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 7

Three Legged Stool

§ Throughput
§ Latency
§  (Memory) Footprint

la
te

nc
y

fo
ot

pr
in

t

th
ro

ug
hp

ut

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 8

2 of 3 Principle

Improving one or two of these performance attributes,
(throughput, latency or footprint) results in sacrificing
some performance in the other.

Hunt, John. Java Performance. Upper Saddle River, NJ, Addison-Wesley, 2011

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 9

2 of 3 Principle (updated)

Improving all three performance attributes [usually]
requires a lot of non-trivial [development] work.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 10

Another Principle - (yet to be named)

An improvement in throughput and/or latency may reduce
or lower the amount of available CPU to the application,
or other applications executing on the same system.
Thus impacting the capacity of the system.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 11

Perhaps an Enhanced Three Legged Stool ?

§ Throughput
§ Latency
§  (Memory) Footprint
§ Capacity

la
te

nc
y

fo
ot

pr
in

t

th
ro

ug
hp

ut

capacity

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 12

High Level Look at Modern
JVM GC Architectures

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 13

Generational GC

§  [Almost] all modern JVMs use a generational GC
–  Segregate objects by age into different spaces, and bias collection of

younger objects
–  Typically two generations; young & old

§  JVMs with generational GCs
–  HotSpot – all GCs supported by Oracle
–  JRockit – all, except JRockit Real-Time
–  Zing – C4 GC
–  J9 – all AFAIK … admit I’m not familiar with J9’s GCs

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 14

Why Generational GC ?

§ Weak generational hypothesis
–  Most objects die young

§ #1 reason for generational GCs
–  Improved throughput

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 15

HotSpot JVM Java Heap Layout

The Java Heap

Young Generation
For new & young objects

	
	

 Old Generation
For older / longer living objects

	
	

[Permanent Generation | Metaspace (JDK 8+)]
for VM & class meta-data

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 16

To
Survivor

From
Survivor

HotSpot JVM Java Heap Layout

The Java Heap

Eden

	
	

 Old Generation
For older / longer living objects

	
	

[Permanent Generation | Metaspace (JDK 8+)]
for VM & class meta-data

New	 object	 alloca,ons	
Reten,on	 /	 aging	 of	 young	
objects	 during	 young	 /	 minor	 GCs	 	

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 17

When tuning GC

§ Think in terms of
–  Frequency

§  How frequent can I live with GC events occurring?
–  Duration

§  For STW GC, how long of a GC pause can I tolerate?
§  For concurrent GC, how much capacity (CPU consumption),

throughput and additional memory am I willing to sacrifice?

General Approach

§ Note: answers to these will differ depending on the application
–  And, they can also differ between application stakeholders

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 18

First Important Concept

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 19

Important Concept #1

§ Frequency of a minor GC event is dictated by
–  Application object allocation rate – how fast it’s allocating objects
–  Size of Eden space

§  This applies to the HotSpot JVM

Frequency of Minor / Young GCs

§  For other generational JVMs it will be the size of the space where new
objects are allocated.

§  For STW collectors, once that space is exhausted, a GC event occurs.
§  For concurrent collectors, there’s usually an occupancy threshold that

once it’s surpassed, a concurrent GC event commences.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 20

Important Concept #1

§ Less frequent GC
–  Make Eden size bigger (assuming same object allocation rate)

Changing the frequency of a minor GC event

Eden (512 MB)

Eden (1024 MB)

§ Same allocation rate, 2x increase in Eden space, time between
GC increases 2x, i.e. minor GC frequency cut in ½

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 21

Important Concept #1

§ HotSpot JVM’s CMS GC, Parallel GC and Serial GC
–  Increase -Xmn, -XX:NewSize / -XX:MaxNewSize
–  -XX:SurvivorRatio if you want preserve young gen size but change Eden

and Survivor sizes
§ HotSpot JVM’s G1 GC

–  Increase -XX:MaxGCPauseMillis
§  G1’s heuristics generally assume greater pause time implies larger

Eden space

Choices for making Eden size larger

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 22

Important Concept #1

§ Reduce object allocation rate
–  Eden space fills more slowly with reduced object allocation rate

How to change the frequency of a minor GC event

Eden (512 MB)

§ Obvious, right? 2x drop in allocation rate, time to fill Eden
space increases 2x, i.e. time between GC increases 2x

Eden (512 MB)

object allocation rate
20 MB / second

40 MB / second

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 23

Important Concept #1

§ Profile application and reduce object allocations
–  Focus on unnecessary object allocations!

§ Throttle application
–  Reduce the injection rate or load on the application

Strategies for reducing object allocation rate

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 24

Second Important Concept

To fill a shape with an image.

1.  Use existing picture box, DO NOT delete and
create new picture box.

2.  Right click on the shape.
3.  At the bottom of the submenu select

“Format Shape”
4.  Select “Fill” at the top of the “Format Shape”

dialog box.
5.  Select “Picture or Texture fill” from the options.
6.  And select “File” under the “Insert from” option.
7.  Navigate to the file you want to use and

select “Insert”
8.  On the “Format” tab, in the Size group, click on

“Crop to Fill” in the Crop tool and drag the image
bounding box to the desired size

9.  DELETE THIS INSTRUCTION NOTE WHEN
NOT IN USE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 25

Important Concept #2

§ Number of live objects has strongest influence of minor GC duration
–  GC only visit (i.e. marks) and evacuates live objects

§ There are other things that can influence minor GC duration
–  Overuse (or abuse) of Reference objects; Weak, Soft, Phantom and Final
–  Memory locality of the marked objects, and evacuation location
–  Young generation object kept live by an old generation reference
–  There can be other reasons

§  In short, ideally minor GC duration should be dominated by marking
and evacuation time

Minor GC Duration (pause time)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 26

Important Concept #2

§ Faster memory and CPU (in general a faster system)
§ Faster STW GC algorithm
§ Concurrent GC

–  May introduce more CPU consumption which can reduce available
capacity

–  May require more memory (footprint) to handle floating garbage
§ Fewer live objects

Choices for reducing minor GC pause time

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 27

Important Concept #2

§ Strategies for achieving fewer live objects per minor GC
–  Smaller Eden space

§  Fewer objects in general implies fewer live objects
–  But may not always hold … smaller Eden space implies Eden

space fills faster … implies more frequent minor GCs … less time
for an object to die … higher live objects to objects allocated ratio

§  Common approach with a concurrent collector in old generation
–  Push “collection work” off til later

»  Leads to more frequent old generation [concurrent] collections, higher CPU
consumption … can impact capacity

Options for realizing fewer live objects

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 28

Important Concept #2

§ Strategies for achieving fewer live objects per minor GC
–  Remove unnecessary object retention

§  Not to be confused with unnecessary object allocation
–  Profile the application

§  Look for potential assignment between two objects that spans multiple
generations

–  Objects in young gen may be presumed alive
–  Look at java.util.LinkedList.clear() as an example

Options for realizing fewer live objects

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 29

Third Important Concept

To fill a shape with an image.

1.  Use existing picture box, DO NOT delete and
create new picture box.

2.  Right click on the shape.
3.  At the bottom of the submenu select

“Format Shape”
4.  Select “Fill” at the top of the “Format Shape”

dialog box.
5.  Select “Picture or Texture fill” from the options.
6.  And select “File” under the “Insert from” option.
7.  Navigate to the file you want to use and

select “Insert”
8.  On the “Format” tab, in the Size group, click on

“Crop to Fill” in the Crop tool and drag the image
bounding box to the desired size

9.  DELETE THIS INSTRUCTION NOTE WHEN
NOT IN USE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 30

Important Concept #3

§ First some background info
–  Lots of variation with Old Generation collectors, STW & concurrent

§  HotSpot’s Parallel GC, ParallelOld GC and Serial GC are STW
§  HotSpot’s CMS GC and G1 GC are mostly concurrent
§  JRockit has both STW and mostly concurrent GCs
§  Zing C4 is a concurrent GC
§  J9 (AFAIK) has both STW and mostly concurrent

Old Generation Collection Frequency

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 31

To
Survivor

From
Survivor

HotSpot JVM Java Heap Layout

The Java Heap

Eden

	
	

 Old Generation
For older / longer living objects

	
	

[Permanent Generation | Metaspace (JDK 8+)]
for VM & class meta-data

New	 object	 alloca,ons	
Reten,on	 /	 aging	 of	 young	
objects	 during	 young	 /	 minor	 GCs	 	

Promo,ons	 of	 longer	 lived	
objects	 during	 minor	 GCs	

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 32

Important Concept #3

§ Old generation collection frequency is dictated by
–  the rate at which objects are promoted from young generation to old

generation
§  HotSpot promotes objects based on an age tenuring threshold

–  Age is # of minor GCs an object survives
–  Age tenuring threshold computed at each minor GC

–  Size of the old generation space
§  STW GCs collect when space is exhausted, concurrent GCs use an

occupancy threshold to initiate concurrent collection cycle

Old Generation Collection Frequency

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 33

Important Concept #3

§ Strategies for reducing the promotion rate
–  More effective object aging

§  In HotSpot, tune survivor space sizes using -XX:SurvivorRatio – strive
to promote objects at max tenuring threshold

§  Increase Eden space size using -Xmn, -XX:[Max]NewSize
–  Minor GCs occur less frequently, object age increments slower

§  Reduce object allocation rate
–  Minor GCs occur less frequently, object age increments slower

How to reduce Old Generation collection frequency

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 34

Important Concept #3

§ Strategies for reducing the promotion rate
–  Reduce object retention

§  Fewer objects to promote per minor GC
§  Also reduces the required survivor space size to avoid early promotion
§  May also reduce the frequency of minor GCs which allows objects to

age longer in young generation survivor spaces

How to reduce Old Generation collection frequency continued …

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 35

Important Concept #3

§ Make old generation size bigger (assuming same promotion rate)

How to reduce Old Generation collection frequency continued …

Old Generation (3 GB)

Old Generation (6 GB)

§ Same promotion rate, 2x increase in old gen space, time
between old generation collection increases 2x

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 36

Important Concept #3

§ For the HotSpot JVM
–  For Parallel GC, CMS GC and Serial GC

§  Increase -Xms and -Xmx, and keep young generation sizing the same
i.e. -Xmn, -XX:[Max]NewSize, -XX:SurvivorRatio

–  For G1 GC
§  May require an increase in both -Xms / -Xmx and
 -XX:InitiatingHeapOccupancyPercent

Choices for increasing the size of old generation

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 37

Important Concept #3

§ Lower old generation occupancy after collection
–  A form of lowering object retention
–  More available space to fill in old generation after collection

§ Approach similar as described earlier for reducing object retention
–  Profile the application and look for objects unnecessarily kept live longer

than need be

How to reduce Old Generation collection frequency continued …

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 38

Important Concept #3

§ Reducing frequency of concurrent collection cycles in old generation
–  Increase heap occupancy threshold that initiates a concurrent cycle

§  Reduces total CPU cycles used for GC over life of application execution
§  But, higher risk of running out of available old generation space

–  Don’t want to “lose the race”
§  In HotSpot CMS GC, -XX:CMSInitiatingHeapOccupancyFraction

–  Also suggest -XX:+UseCMSInitiatingOccupancyOnly
§  In HotSpot G1 GC, -XX:InitiatingHeapOccupancyPercent

What about frequency of concurrent collection cycles?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 39

Forth Important Concept

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 40

Important Concept #4

§  I’m making a distinction between a Full GC, and an old generation
collection

–  Full GC may involve collecting and compacting both young generation and
old generation – (this is the default behavior for the HotSpot JVM)

–  Collecting old generation means the collecting of old generation only, not
necessarily compacting old generation, and (obviously) not collecting
young generation

Duration of old generation collection

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 41

Important Concept #4

§ Duration of old generation collection
–  Similar to minor GC, number of live objects has strongest influence of old

generation collection duration
–  Other things that can influence old generation collection duration

§  Overuse (or abuse) of Reference objects; Weak, Soft, Phantom and
Final

–  Note: SoftReferences can also influence old generation collection
frequency

§  Memory locality, etc.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 42

Important Concept #4

§ For old generation collection, desire duration to be dominated by time
to mark live objects

–  And, if the GC also does compaction, then also live object compaction
–  HotSpot Parallel GC and Serial GC mark live objects and compacts them,

aka a mark-compact collector
§  These GCs also happen to be STW collectors, both young & old

generation collectors

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 43

Important Concept #4

§ Note, for [mostly] concurrent old generation collection, also desire
duration to be dominated by time to mark live objects

–  HotSpot CMS GC does not do compaction - it is a mark-sweep collector
§  No compaction unless promotion failure – resorts to a Full GC

–  HotSpot G1 GC achieves compaction by evacuating live objects from old
generation regions to available (empty) old generation regions
§  Evacuation (copy) time is where you want G1 to spend most of its time

outside of marking
§  Evacuation in G1 is a STW part of a G1 concurrent old gen collection

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 44

Important Concept #4

§ Faster memory and CPU (in general a faster system)
§ Faster STW GC algorithm
§ Concurrent old generation collection

–  May introduce more CPU consumption which can reduce throughput and
available capacity

–  May require more memory (footprint) to handle floating garbage
§ Fewer live objects in old generation

What can be done to reduce old generation collection pause time

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 45

Important Concept #4

§ What are you gaining with [mostly] concurrent collector
–  Lower GC pause times / improved latency

§ What are you sacrificing / giving up
–  Usually more Java heap
–  More CPU consumption

§ Translation, for improving latency, you’re sacrificing something in at
least one, or possibly all three of

–  footprint, throughput and capacity

Summary of concurrent old generation collection trade-offs

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 46

Important Concept #4

§ Achieving fewer live objects per old generation collection
–  Larger old generation space ?

§  Possibly
–  In general, if the increase is size allows more objects to die
–  Example, if the length of a typical application transaction is greater

than the time between old generation collection, then increasing
old generation could reduce the number of live objects marked
during an old generation collection

Strategies for Fewer Live Objects

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 47

Summary

To fill a shape with an image.

1.  Use existing picture box, DO NOT delete and
create new picture box.

2.  Right click on the shape.
3.  At the bottom of the submenu select

“Format Shape”
4.  Select “Fill” at the top of the “Format Shape”

dialog box.
5.  Select “Picture or Texture fill” from the options.
6.  And select “File” under the “Insert from” option.
7.  Navigate to the file you want to use and

select “Insert”
8.  On the “Format” tab, in the Size group, click on

“Crop to Fill” in the Crop tool and drag the image
bounding box to the desired size

9.  DELETE THIS INSTRUCTION NOTE WHEN
NOT IN USE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 48

Take away

If you think about GC tuning in terms of garbage
collection frequency and duration, for both young
generation, and old generation collection you can reason
about the action to take to meet the throughput, latency,
footprint and available capacity goals for your application.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 49

Credits

§ Huge thank you to all HotSpot GC team members, past and present
§ Countless others, past and present from the HotSpot JVM team

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 50

Last Slide --- I Promise!!!

§  Java Performance [1]
–  Discounted tomorrow (May 21st) $19.99 – http://informit.com/deals

§  Java Performance: The Definitive Guide [2]
§ The Garbage Collection Handbook [3]

Additional Reading (Books)

[1] Hunt, John. Java Performance. Upper Saddle River, NJ, Addison-Wesley, 2011
[2] Oaks. Java Performance: The Definitive Guide. Sebastopol, CA, O’Reilly Media, Inc. 2014
[3] Jones, Hosking, Moss. The Garbage Collection Book. Boca Raton, FL, CRC Press 2012

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 51

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 52

